题目内容
17.已知函数$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,则f(2+log23)=( )| A. | 8 | B. | 12 | C. | 16 | D. | 24 |
分析 由已知得f(2+log23)=f(3+log23)=${2}^{3+lo{g}_{2}3}$,由此能求出结果.
解答 解:∵函数$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,
∴f(2+log23)=f(3+log23)
=${2}^{3+lo{g}_{2}3}$=${2}^{3}×{2}^{lo{g}_{2}3}$=8×3=24.
故选:D.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
7.若集合A={x∈N|5+4x-x2>0},B={x|x<3},则A∩B等于( )
| A. | (-1,3) | B. | {1,2} | C. | 0,3) | D. | {0,1,2} |
5.把函数f(x)=2sin(x+2φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{2}$个单位长度之后,所得图象关于直线$x=\frac{π}{4}$对称,且f(0)<f($\frac{π}{2}$-φ),则φ=( )
| A. | $\frac{π}{8}$ | B. | $\frac{3π}{8}$ | C. | $-\frac{π}{8}$ | D. | $-\frac{3π}{8}$ |
12.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
(Ⅰ)他的数学成绩与物理成绩哪个更稳定?请给出你的说明;
(Ⅱ)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程
(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
| 数学 | 108 | 103 | 137 | 112 | 128 | 120 | 132 |
| 物理 | 74 | 71 | 88 | 76 | 84 | 81 | 86 |
(Ⅱ)已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程
(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
2.已知函数f(x)=|log2|1-x||,若函数g(x)=f2(x)+af(x)+2b有6个不同的零点,则这6个零点之和为( )
| A. | 7 | B. | 6 | C. | $\frac{11}{2}$ | D. | $\frac{9}{2}$ |
6.
如图,A1,A2为椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=( )
| A. | 14 | B. | 12 | C. | 9 | D. | 7 |
7.已知集合A={x|x2-2x-3<0},B={x||x|<2},则A∩B=( )
| A. | {x|-2<x<2} | B. | {x|-2<x<3} | C. | {x|-1<x<3} | D. | {x|-1<x<2} |