题目内容
2.设Sn为等差数列{an}的前n项和,若a1=1,S7=70,则a2=( )| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 利用等差数列前n项和公式求出公差,由此能求出这个数列的第二项.
解答 解:∵Sn为等差数列{an}的前n项和,a1=1,S7=70,
∴${S}_{7}=7×1+\frac{7×6}{2}d=70$,解得d=3,
∴a2=1+3=4.
故选:C.
点评 本题考查等差数列的第二项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
12.若直角坐标平面内两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称(P,Q)是函数y=f(x)的一个“伙伴点组”(点组(P,Q)与(Q,P)看作同一个“伙伴点组”).已知函数$f(x)=\left\{\begin{array}{l}kx-1,x>0\\-ln(-x),x<0\end{array}\right.$,有两个“伙伴点组”,则实数k的取值范围是( )
| A. | (-∞,0) | B. | (0,1) | C. | (0,$\frac{1}{2}$) | D. | (0,+∞) |
13.已知矩形ABCD,PA⊥面ABCD,连接AC、BD、PB、PC、PD,则下列各组向量中数量积不为0的是( )
| A. | $\overrightarrow{PC}$和$\overrightarrow{BD}$ | B. | $\overrightarrow{DA}$和$\overrightarrow{PB}$ | C. | $\overrightarrow{PD}$与$\overrightarrow{AB}$ | D. | $\overrightarrow{PC}$与$\overrightarrow{AD}$ |
10.已知f(x)=$\frac{{2}^{x+1}+1}{{2}^{x}-1}$,且对于任意x∈[1,3],不等式f(x)>|x-2|+m恒成立,则m的取值范围是( )
| A. | (-∞,-4] | B. | (-$\frac{1}{2}$,+∞) | C. | (-∞,-$\frac{9}{8}$) | D. | (-∞,$\frac{10}{7}$) |
17.某学校高中毕业班有男生900人,女生600人,学校为了对高三学生数学学习情况进行分析,从高三年级按照性别进行分层抽样,抽取200名学生成绩,统计数据如表所示:
(Ⅰ)若成绩90分以上(含90分),则成绩为及格,请估计该校毕业班平均成绩及格学生人数;
(Ⅱ)如果样本数据中,有60名女生数学成绩合格,请完成如下数学成绩与性别的列联表,并判断是否有90%的把握认为“该校学生的数学成绩与性别有关”.
参考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
| 分数段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 总计 |
| 频数 | 20 | 40 | 70 | 50 | 20 | 200 |
(Ⅱ)如果样本数据中,有60名女生数学成绩合格,请完成如下数学成绩与性别的列联表,并判断是否有90%的把握认为“该校学生的数学成绩与性别有关”.
| 女生 | 男生 | 总计 | |
| 及格人数 | 60 | ||
| 不及格人数 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.050 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
14.设x∈R,则“x<1”是“x|x|<1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |