题目内容

已知全集U=R,集合A={x|x2-4x+3<0},B={x|
2
x-2
>1},C={x|x-m|>2,m∈R}.对于任意x∈A∩B,总有x∈∁UC.
(1)A∩B;
(2)求实数m的取值范围.
考点:交集及其运算
专题:集合
分析:(1)利用交集定义能求出A∩B.
(2)由已知得CUC={x|m-2≤x≤m+2},
m-2≤2
m+2≥3
,由此能求出实数m的取值范围.
解答: 解:(1)∵全集U=R,集合A={x|x2-4x+3<0}={x|1<x<3},
B={x|
2
x-2
>1}={x|2<x<4},
∴A∩B={x|2<x<3}.
(2)∵C={x|x-m|>2,m∈R}={x|x>m+2或x<m-2}.
∴CUC={x|m-2≤x≤m+2},
∵对于任意x∈A∩B,总有x∈∁UC.
m-2≤2
m+2≥3
,解得1≤m≤4.
∴实数m的取值范围是[1,4].
点评:本题考查交集的求法,考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网