题目内容
2.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-a≤0}\end{array}\right.$,若z=$\frac{y+1}{x}$的最小值小于0,则实数a的取值范围是a>$\frac{3}{2}$.分析 作出不等式组对应的平面区域,利用目标函数的几何意义,建立条件关系进行求解即可.
解答
解:作出不等式组对应的平面区域如图:则a大于C点的横坐标,
则z=$\frac{y+1}{x}$的几何意义是区域内的点到定点(0,-1)的斜率,
则OA的斜率最小,由$\left\{\begin{array}{l}{x=a}\\{2x+y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=a}\\{y=2-2a}\end{array}\right.$,即A(a,2-2a),
∵z=$\frac{y+1}{x}$的最小值小于0,
∴此时$\frac{2-2a+1}{a}$=$\frac{3-2a}{a}$<0,得a>$\frac{3}{2}$或a<0(舍),
故答案为:a>$\frac{3}{2}$.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键.
练习册系列答案
相关题目
19.某市共有初中学生270000人,其中初一年级,初二年级,初三年级学生人数分别为99000,90000,81000,为了解该市学生参加“开放性科学实验活动”的意向,现采用分层抽样的方法从中抽取一个容量为3000的样本,那么应该抽取初三年级的人数为( )
| A. | 800 | B. | 900 | C. | 1000 | D. | 1100 |
20.已知函数f(x)的图象是连续不断的,有如下的对应值表:
则函数y=f(x)在区间[1,6]上的零点至少有( )
| x | 1 | 2 | 3 | 4 | 5 | 6 |
| y | 123.56 | 21.45 | -7.82 | 11.45 | -53.76 | -128.88 |
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
7.下列函数中,不是偶函数的是( )
| A. | y=x2+4 | B. | y=|tanx| | C. | y=cos2x | D. | y=3x-3-x |
12.已知复数z(1+i)=2i,则复数z=( )
| A. | 1+i | B. | 1-i | C. | $\frac{1}{2}$+$\frac{1}{2}$i | D. | $\frac{1}{2}$-$\frac{1}{2}$i |