题目内容

2.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-a≤0}\end{array}\right.$,若z=$\frac{y+1}{x}$的最小值小于0,则实数a的取值范围是a>$\frac{3}{2}$.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,建立条件关系进行求解即可.

解答 解:作出不等式组对应的平面区域如图:则a大于C点的横坐标,
则z=$\frac{y+1}{x}$的几何意义是区域内的点到定点(0,-1)的斜率,
则OA的斜率最小,由$\left\{\begin{array}{l}{x=a}\\{2x+y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=a}\\{y=2-2a}\end{array}\right.$,即A(a,2-2a),
∵z=$\frac{y+1}{x}$的最小值小于0,
∴此时$\frac{2-2a+1}{a}$=$\frac{3-2a}{a}$<0,得a>$\frac{3}{2}$或a<0(舍),
故答案为:a>$\frac{3}{2}$.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网