题目内容
17.求满足下列条件的函数f(x).(1)f(x)是三次函数,且f(0)=3,f′(0)=0,f′(1)=-3,f′(2)=0.
(2)f(x)是二次函数,且x2f′(x)-(2x-1)f(x)=1对x∈R恒成立.
分析 (1)设出函数解析式f(x)=ax3+bx2+cx+d(a≠0),由f(0)=3求得d,再求出导函数,结合f′(0)=0,f′(1)=-3,f′(2)=0列式求得a,b,c的值,则函数解析式可求;
(2)由f(x)是二次函数,可设f(x)=ax2+bx+c(a≠0),代入x2f′(x)-(2x-1)f(x)=1,整理后比较系数列式求得a,b,c的值,则答案可求.
解答 解:(1)设f(x)=ax3+bx2+cx+d(a≠0),
∵f(0)=3,∴d=3,
∴f(x)=ax3+bx2+cx+3,f′(x)=3ax2+2bx+c,
由f′(0)=0,f′(1)=-3,f′(2)=0,得
$\left\{\begin{array}{l}{c=0}\\{3a+2b+c=0}\\{12a+4b+c=0}\end{array}\right.$,解得a=1,b=-3,c=0.
∴f(x)=x3-3x2+3;
(2)∵f(x)是二次函数
设f(x)=ax2+bx+c(a≠0),
∴f′(x)=2ax+b(a≠0),
由x2f′(x)-(2x-1)f(x)=1,得x2(2ax+b)-(2x-1)(ax2+bx+c)=1,
即(a-b)x2+(b-2c)x+c-1=0.
∴$\left\{\begin{array}{l}{a-b=0}\\{b-2c=0}\\{c-1=0}\end{array}\right.$,
解得a=2,b=2,c=1.
∴f(x)=2x2+2x+1.
点评 本题考查导数的运算,考查了利用待定系数法求函数解析式,是基础题.
练习册系列答案
相关题目
7.已知向量$\overrightarrow{a}$=(1,2),2$\overrightarrow{a}$+$\overrightarrow{b}$=(3,2),则$\overrightarrow{b}$=( )
| A. | (1,2) | B. | (1,-2) | C. | (5,6) | D. | (2,0) |