题目内容

20.已知点(x,y)满足不等式组$\left\{\begin{array}{l}x-y+3≥0\\ 2x-y-1≤0\\ 3x+2y-6≥0\end{array}\right.$,则z=x+y的最小值为(  )
A.3B.11C.$\frac{17}{7}$D.$\frac{15}{7}$

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值.

解答 解:作出不等式组$\left\{\begin{array}{l}x-y+3≥0\\ 2x-y-1≤0\\ 3x+2y-6≥0\end{array}\right.$,对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{2x-y-1=0}\\{3x+2y-6=0}\end{array}\right.$,解得A($\frac{8}{7}$,$\frac{9}{7}$),
代入目标函数z=x+y得z=$\frac{17}{7}$.
即目标函数z=x+y的最小值为$\frac{17}{7}$.
故选:C.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网