题目内容

对于函数f(x),若在定义域内存在实数x,使得f(-x)=-f(x),则称f(x)为“局部奇函数”.若f(x)=2x+m是定义在区间[-1,1]上的“局部奇函数”,则实数m的取值范围是
 
考点:抽象函数及其应用
专题:函数的性质及应用
分析:利用局部奇函数的定义,建立方程关系,然后判断方程是否有解即可.
解答: 解:根据局部奇函数的定义,f(x)=2x+m时,f(-x)=-f(x)可化为2x+2-x+2m=0,
因为f(x)的定义域为[-1,1],所以方程2x+2-x+2m=0在[-1,1]上有解,
令t=2x∈[
1
2
,2],则-2m=t+
1
t

设g(t)=t+
1
t
,则g'(t)=1-
1
t2
=
t2-1
t2

当t∈(0,1)时,g'(t)<0,故g(t)在(0,1)上为减函数,
当t∈(1,+∞)时,g'(t)>0,故g(t)在(1,+∞)上为增函数,
所以t∈[
1
2
,2]时,g(t)∈[2,
5
2
].所以-2m∈[2,
5
2
],即m∈[-
5
4
,-1]

故答案为:[-
5
4
,-1]
点评:本题主要考查新定义的应用,利用新定义,建立方程关系,然后利用函数性质进行求解是解决本题的关键,考查学生的运算能力
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网