题目内容

15.三棱锥P-ABC的三条侧棱两两垂直,且PA=PB=PC=1,则其外接球上的点到平面ABC的距离的最大值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

分析 将PA、PB、PC可看作是正方体的一个顶点发出的三条棱,所以过空间四个点P、A、B、C的球面即为的正方体的外接球,球的直径即是正方体的对角线,求出对角线长,即为球的直径,而球心O到平面ABC的距离为体对角线的$\frac{1}{6}$,然后求解结果即可.

解答 解:空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=1,
则PA、PB、PC可看作是正方体的一个顶点发出的三条棱,
所以过空间四个点P、A、B、C的球面即为的正方体的外接球,球的直径即是正方体的对角线,长为$\sqrt{3}$,
球心O到平面ABC的距离为体对角线的$\frac{1}{6}$,即球心O到平面ABC的距离为$\frac{\sqrt{3}}{6}$.
其外接球上的点到平面ABC的距离的最大值为:$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{6}$=$\frac{2\sqrt{3}}{3}$.
故选:D.

点评 本题是基础题,考查球的内接体知识,O到面ABC的距离的求法,考查空间想象能力,计算能力,分析出正方体的对角线就是球的直径是解好本题的关键所在.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网