题目内容

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
S2
b2

(1)求an与bn
(2)设数列{cn}满足cn=
1
Sn
,{cn}的前n项和Tn,求证:Tn
2
3
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件得
q+3+a2=12
q=
3+a1
q
,解得q=3,a2=6,由此能求出an与bn
(2)由Sn=
n(3+3n)
2
,得cn=
1
Sn
=
2
n(3+3n)
=
2
3
(
1
n
-
1
n+1
)
,由此利用裂项求和法能证明Tn
2
3
解答: 解:(1)∵在等差数列{an}中,a1=3,其前n项和为Sn
等比数列{bn}的各项均为正数,b1=1,公比为q,
且b2+S2=12,q=
S2
b2

q+3+a2=12
q=
3+a1
q

解得q=3或q=-4(舍去),
∴a2=6,d=a2-a1=6-3=3,
∴an=3+(n-1)•3=3n
bn=3n-1
(2)∵Sn=
n(3+3n)
2

∴cn=
1
Sn
=
2
n(3+3n)
=
2
3
(
1
n
-
1
n+1
)

∴Tn=
2
3
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)

=
2
3
(1-
1
n+1
)

∴Tn
2
3
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网