题目内容

在△ABC中,内角A,B,C的对边分别为a,b,c,已知a-b=2,c=4,sinA=2sinB.
(Ⅰ)求△ABC的面积;
(Ⅱ)求sin(2A-B).
考点:三角函数中的恒等变换应用
专题:计算题,三角函数的求值,解三角形
分析:解法一:(I)由已知及正弦定理可求a,b的值,由余弦定理可求cosB,从而可求sinB,即可由三角形面积公式求解.
(II)由余弦定理可得cosA,从而可求sinA,sin2A,cos2A,由两角差的正弦公式即可求sin(2A-B)的值.
解法二:(I)由已知及正弦定理可求a,b的值,又c=4,可知△ABC为等腰三角形,作BD⊥AC于D,可求BD=
c2-(
b
2
)2
=
15
,即可求三角形面积.
(II)由余弦定理可得cosB,即可求sinB,由(I)知A=C⇒2A-B=π-2B.从而sin(2A-B)=sin(π-2B)=sin2B,代入即可求值.
解答: 解:
解法一:(I)由sinA=2sinB⇒a=2b.
又∵a-b=2,
∴a=4,b=2. 
cosB=
a2+c2-b2
2ac
=
42+42-22
2×4×4
=
7
8
. 
sinB=
1-cos2B
=
1-(
7
8
)2
=
15
8

∴S△ABC=
1
2
acsinB=
1
2
×4×4×
15
8
=
15

(II)cosA=
b2+c2-a2
2bc
=
22+42-42
2×2×4
=
1
4

sinA=
1-cos2A
=
1-(
1
4
)2
=
15
4
.  
sin2A=2sinAcosA=2×
1
4
×
15
4
=
15
8

cos2A=cos2A-sin2A=-
7
8

∴sin(2A-B)=sin2AcosB-cos2AsinB
=
15
8
×
7
8
-(-
7
8
15
8
=
7
15
32


解法二:(I)由sinA=2sinB⇒a=2b.
又∵a-b=2,
∴a=4,b=2. 
又c=4,可知△ABC为等腰三角形. 
作BD⊥AC于D,则BD=
c2-(
b
2
)2
=
42-12
=
15
. 
∴S△ABC=
1
2
×AC×BD=
1
2
×2×
15
=
15

(II)cosB=
a2+c2-b2
2ac
=
42+42-22
2×4×4
=
7
8

sinB=
1-cos2B
=
1-(
7
8
)2
=
15
8

由(I)知A=C⇒2A-B=π-2B.
∴sin(2A-B)=sin(π-2B)=sin2B
=2sinBcosB  
=2×
15
8
×
7
8
=
7
15
32
点评:本题主要考查了正弦定理、余弦定理、三角形面积公式的应用,考查了三角函数中的恒等变换应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网