题目内容
求an=
的前n项和.
| n+2 |
| 3n |
考点:数列的求和
专题:等差数列与等比数列
分析:由an=
,利用错位相减法能求出{an}的前n项和.
| n+2 |
| 3n |
解答:
解:∵an=
,
∴{an}的前n项和:Sn=
+
+
+…+
,①
Sn=
+
+
+…+
,②
①-②,得
Sn=
+
+
+
+…+
-
=
+
-
=
-
×
-
,
∴Sn=
-
•3-n.
| n+2 |
| 3n |
∴{an}的前n项和:Sn=
| 3 |
| 3 |
| 4 |
| 32 |
| 5 |
| 33 |
| n+2 |
| 3n |
| 1 |
| 3 |
| 3 |
| 32 |
| 4 |
| 33 |
| 5 |
| 34 |
| n+2 |
| 3n+1 |
①-②,得
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| n+2 |
| 3n+1 |
=
| 2 |
| 3 |
| ||||
1-
|
| n+2 |
| 3n+1 |
=
| 7 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3n |
| n+2 |
| 3n+1 |
∴Sn=
| 7 |
| 4 |
| 2n+7 |
| 4 |
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目