题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,过F1作倾斜角为30°的直线与椭圆的一个交点为P,且PF2⊥x轴,则此椭圆的离心率为
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据∠PF1F2=30°,|F1F2|=2c,推断出|PF1|=2|PF2|,进而根据椭圆的定义分别表示出|PF2|和|PF1|,进而根据勾股定理建立等式求得a和c的关系,则椭圆离心率可得.
解答: 解:在Rt△PF2F1中,∠PF1F2=30°,|F1F2|=2c,|PF1|=2|PF2|,
根据椭圆的定义得|PF2|=
2
3
a,|PF1|=
4
3
a,
又|PF1|2-|PF2|2=|F1F2|2,即
16
9
a2-
4
9
a2=4c2
∴e=
c
a
=
3
3

故答案为:
3
3
点评:本题主要考查了直线与圆锥曲线的综合问题.解题的关键是灵活利用了椭圆的定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网