题目内容

设曲线C的参数方程为
x=3cosθ
y=3sinθ
(θ为参数),直线l的方程为x=2,则曲线C与直线l交点的个数为(  )
A、0B、1C、2D、3
考点:参数方程化成普通方程
专题:选作题,坐标系和参数方程
分析:将曲线方程化为普通方程,利用点到直线的距离公式求出圆心到直线的距离d,与半径r比较大小即可得出直线与圆的交点个数.
解答: 解:将曲线C的参数方程为
x=3cosθ
y=3sinθ
(θ为参数),化为普通方程得:x2+y2=9,
∵圆心到直线x=2的距离d=2<3r,
则直线与圆的位置关系是相交,即交点个数为2个.
故答案为:2
点评:此题考查了直线与圆的位置关系,以及参数方程化为普通方程,直线与圆的位置关系由d与r来判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交(d为圆心到直线的距离,r为圆的半径).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网