题目内容

12.给出三个不等式:①x2-y2>0;②x2-y2<0;③x2+y2>0,如图所示的阴影区域应是序号为②的不等式所表示的平面区域.

分析 根据不等式的等价条件,进行转化,作出对应的平面区域即可得到结论.

解答 解::①x2-y2>0等价为(x-y)(x+y>0,即$\left\{\begin{array}{l}{x-y>0}\\{x+y>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y<0}\\{x+y<0}\end{array}\right.$
②x2-y2<0等价为(x-y)(x+y)<0;即$\left\{\begin{array}{l}{x-y>0}\\{x+y<0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y<0}\\{x+y>0}\end{array}\right.$
③x2+y2>0恒成立,
则不等式②对应的区域是如图对应的区域,
故答案为:②.

点评 本题主要考查平面区域的作法,根据二元一次不等式组与平面区域的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网