ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªµÈ²îÊýÁÐ{an}ºÍ{bn} µÄǰnÏîºÍS·Ö±ðΪSn¡¢Tn£¬ÇÒ$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{n+3}$£¬Ôò$\frac{{a}_{2}+{a}_{5}+{a}_{17}+{a}_{22}}{{b}_{8}+{b}_{10}+{b}_{12}+{b}_{16}}$=£¨¡¡¡¡£©| A£® | $\frac{31}{5}$ | B£® | $\frac{32}{5}$ | C£® | 6 | D£® | 7 |
·ÖÎö ÓÉÒÑÖªÀûÓõȲîÊýÁеÄͨÏʽÏÈÇó³ö$\frac{{a}_{2}+{a}_{5}+{a}_{17}+{a}_{22}}{{b}_{8}+{b}_{10}+{b}_{12}+{b}_{16}}$=$\frac{{a}_{1}+{a}_{22}}{{b}_{1}+{b}_{22}}$£¬ÔÙÓɵȲîÊýÁÐǰnÏîºÍ¹«Ê½ÍƵ¼³öÔʽµÈÓÚ$\frac{{S}_{22}}{{T}_{22}}$£¬ÓÉ´ËÄÜÇó½â³ö½á¹û£®
½â´ð ½â£º¡ßµÈ²îÊýÁÐ{an}ºÍ{bn} µÄǰnÏîºÍS·Ö±ðΪSn¡¢Tn£¬ÇÒ$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+1}{n+3}$£¬
¡àÓɵȲîÊýÁеÄͨÏʽ¿ÉµÃ£º
$\frac{{a}_{2}+{a}_{5}+{a}_{17}+{a}_{22}}{{b}_{8}+{b}_{10}+{b}_{12}+{b}_{16}}$
=$\frac{2£¨2{a}_{1}+21d£©}{2£¨2{b}_{1}+21d£©}$
=$\frac{{a}_{1}+{a}_{22}}{{b}_{1}+{b}_{22}}$
=$\frac{\frac{22£¨{a}_{1}+{a}_{22}£©}{2}}{\frac{22£¨{b}_{1}+{b}_{22}£©}{2}}$
=$\frac{{S}_{22}}{{T}_{22}}$=$\frac{7¡Á22+1}{22+3}$
=$\frac{155}{25}$=$\frac{31}{5}$£¬
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÁ½¸öµÈ²îÊýÁеÄÈô¸ÉÏîµÄºÍµÄ±ÈÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ²îÊýÁеÄÐÔÖʵĺÏÀíÔËÓã®
| A£® | 30¡ã | B£® | 60¡ã | C£® | 60¡ã»ò120¡ã | D£® | 30¡ã»ò150¡ã |