题目内容

2.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为θ,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,求θ.

分析 (1)利用两个向量平行的性质,两个向量的数量积的定义,求得$\overrightarrow{a}•\overrightarrow{b}$的值.
(2)利用两个向量垂直的性质,两个向量的数量积的定义,求得cosθ的值,可得θ的值.

解答 解:(1)∵向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为θ,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则θ=0°或180°,所以$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos θ=±$\sqrt{2}$.
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则($\overrightarrow{a}-\overrightarrow{b}$)•$\overrightarrow{a}$=0,即|$\overrightarrow{a}$|2-$\overrightarrow{a}•\overrightarrow{b}$=1-$\sqrt{2}$cos θ=0,∴cos θ=$\frac{\sqrt{2}}{2}$.
又0°≤θ≤180°,∴θ=45°.

点评 本题主要考查两个向量平行、垂直的性质,两个向量的数量积的定义,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网