题目内容

已知函数f(x)=2sin(ωx+
π
6
)(ω>0,x∈R)的最小正周期为π.
(1)求ω的值;
(2)若f(α)=
2
3
,α∈(0,
π
8
),求cos2α的值.
考点:正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)直接利用正弦型函数的周期关系式求出结论.
(2)利用(1)所确定的函数关系式进一步对关系式中的角进行恒等变换,利用三角函数的诱导公式求出结果.
解答: 解:(1)函数f(x)=2sin(ωx+
π
6
)(ω>0,x∈R)的最小正周期为π,
ω
得ω=2;
(2)解法1:由f(α)=2sin(2α+
π
6
)=
2
3
sin(2α+
π
6
)=
1
3

α∈(0,
π
8
)
,∴2α+
π
6
∈(
π
6
12
)

cos(2α+
π
6
)=
1-sin2(2α+
π
6
)
=
2
2
3

cos2α=cos[(2α+
π
6
)-
π
6
]

=cos(2α+
π
6
)cos
π
6
+sin(2α+
π
6
)sin
π
6

=
2
2
3
3
2
+
1
3
1
2
=
2
6
+1
6

[解法2]:由f(α)=2sin(2α+
π
6
)=
2
3
sin(2α+
π
6
)=
1
3

sin2αcos
π
6
+cos2αsin
π
6
=
1
3
sin2α=
2
3
-cos2α
3

将①代入sin22α+cos22α=1并整理得4cos22α-12cos2α-23=0,
解得:cos2α=
12±24
6
72
=
1±2
6
6
,②
α∈(0,
π
8
)
0<2α<
π
4
,∴cos2α>0,故②中负值不合舍去,
cos2α=
1+2
6
6
点评:本题考查的知识要点:利用正弦型函数周期的关系式确定函数的解析式,函数关系式中角的恒等变换的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网