题目内容

在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA-
3
cosB=0,且b2=ac,则
a+c
b
的值为(  )
A、
2
2
B、
2
C、2
D、4
考点:正弦定理,三角函数中的恒等变换应用,余弦定理
专题:解三角形
分析:先由条件利用正弦定理求得角B,再由余弦定理列出关于a,c的关系式,然后进行合理的变形,求得
a+c
b
的值.
解答: 解:△ABC中,由bsinA-
3
cosB=0利用正弦定理得sinBsinA-
3
sinAcosB=0,∴tanB=
3
,故B=
π
3

由余弦定理得b2=a2+c2-2ac•cosB=a2+c2-ac,即 b2=(a+c)2-3ac,
又b2=ac,所以 4b2=(a+c)2,求得
a+c
b
=2,
故选:C.
点评:本题考查正弦定理、余弦定理得应用.解题先由正弦定理求得角B,再由余弦定理列出关于a,c的关系式,然后进行合理的变形,求得
a+c
b
的值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网