题目内容
17.已知复数z满足z(1-i)2=1+i(i为虚数单位),则z=( )| A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}$i | C. | -$\frac{1}{2}$+$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.
解答 解:∵z(1-i)2=1+i,
∴$z=\frac{1+i}{(1-i)^{2}}=\frac{1+i}{-2i}=\frac{(1+i)•i}{-2{i}^{2}}=-\frac{1}{2}+\frac{i}{2}$,
故选:C.
点评 本题考查复数代数形式的乘除运算,是基础的计算题.
练习册系列答案
相关题目
7.我们知道:“心有灵犀”一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在{1,2,3,4,5,6}中说一个数,甲说的数记为a,乙说的数记为b,若|a-b|≤1,则称甲、乙两人“心有灵犀”,由此可以得到甲、乙两人“心有灵犀”的概率是( )
| A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{9}$ |
5.
某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:
(Ⅰ)求频率分布表中x、y的值,并补全频率分布直方图;
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人重随机抽取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.
| 分组(岁) | 频数 |
| [25,30) | x |
| [30,35) | y |
| [35,40) | 35 |
| [40,45) | 30 |
| [45,50] | 10 |
| 合计 | 100 |
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人重随机抽取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.
2.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≤0}\\{\frac{{e}^{x-1}}{x}},x>0\end{array}\right.$(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是( )
| A. | (-∞,0) | B. | (-e,e) | C. | (-1,1) | D. | (0,+∞) |
6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,且双曲线的一条渐近线与抛物线的准线交于点M(-3,t),|MF|=$\frac{{\sqrt{153}}}{2}$,则双曲线的离心率为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |