题目内容

9.若等比数列{an}的公比为2,且a3-a1=6,则$\frac{1}{{{a}_{1}}}$+$\frac{1}{{{a}_{2}}}$+…+$\frac{1}{{{a}_{n}}}$=1-$\frac{1}{{2}^{n}}$.

分析 等比数列{an}的公比为2,且a3-a1=6,可得a1(22-1)=6,解得a1.可得an=2n.再利用等比数列的求和公式即可得出.

解答 解:等比数列{an}的公比为2,且a3-a1=6,
∴a1(22-1)=6,解得a1=2.
∴an=2n
则$\frac{1}{{{a}_{1}}}$+$\frac{1}{{{a}_{2}}}$+…+$\frac{1}{{{a}_{n}}}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.
故答案为:1-$\frac{1}{{2}^{n}}$.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网