题目内容
19.已知x,y满足$\left\{\begin{array}{l}y≥x\\ x+y≤2\\ x≥a\end{array}\right.$,且z=2x-y的最大值是最小值的-2倍,则a的值是$\frac{1}{2}$.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得到z的最值,再由z=2x+y的最大值是最小值的2倍列式求得a值.
解答
解:由约束条件$\left\{\begin{array}{l}y≥x\\ x+y≤2\\ x≥a\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x=a}\\{x+y=2}\end{array}\right.$,得B(a,2-a),
联立$\left\{\begin{array}{l}{y=x}\\{x+y=2}\end{array}\right.$,得A(1,1),
化目标函数z=2x-y为y=2x-z,
由图可知zmax=2×1-1=1,zmin=2a-2+a=3a-2,
由$\frac{1}{3a-2}=-2$,解得:a=$\frac{1}{2}$
故答案为:$\frac{1}{2}$.
点评 本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
18.已知sinα=-$\frac{4}{5}$,α∈(π,$\frac{3π}{2}$),则tan$\frac{α}{2}$等于( )
| A. | -2 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$或2 | D. | -2或$\frac{1}{2}$ |
4.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10<0\\ x+y-8≤0\end{array}\right.$,则目标函数z=3x-4y的取值范围是( )
| A. | [-11,3) | B. | [-11,3] | C. | (-11,3) | D. | (-11,3] |
11.为了得到函数g(x)=cos2x的图象,可以将f(x)=sin(2x+$\frac{π}{3}$)的图象( )
| A. | 向左平移$\frac{π}{12}$个单位长度 | B. | 向左平移$\frac{7π}{12}$个单位长度 | ||
| C. | 向右平移$\frac{π}{12}$个单位长度 | D. | 向右平移$\frac{7π}{12}$个单位长度 |