题目内容
15.设k为常数,且$cos(\frac{π}{4}-α)=k$,则用k表示sin2α的式子为sin2α=2k2-1.分析 利用两角差的余弦函数公式化简已知等式,进而两边平方利用二倍角的正弦函数公式,同角三角函数基本关系式即可求解.
解答 解:∵$cos(\frac{π}{4}-α)=k$,
∴$\frac{\sqrt{2}}{2}$(cosα+sinα)=k,可得:cosα+sinα=$\sqrt{2}$k,
∴两边平方可得:cos2α+sin2α+2cosαsinα=2k2,可得:1+sin2α=2k2,
∴sin2α=2k2-1.
故答案为:sin2α=2k2-1.
点评 本题主要考查了两角差的余弦函数公式,二倍角的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
6.m,n表示两条不同直线,α,β,γ表示平面,下列说法正确的个数是( )
①若α∩β=m,α∩γ=n,且m∥n,则β∥γ;
②若m,n相交且都在α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;
③若α∩β=l,m∥α,m∥β,n∥α,n∥β,则m∥n;
④若m∥α,n∥α,则m∥n.
①若α∩β=m,α∩γ=n,且m∥n,则β∥γ;
②若m,n相交且都在α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;
③若α∩β=l,m∥α,m∥β,n∥α,n∥β,则m∥n;
④若m∥α,n∥α,则m∥n.
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
3.设a=log310,b=log37,则3a-b=( )
| A. | $\frac{10}{49}$ | B. | $\frac{49}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{10}{7}$ |
20.设x,y∈R,则“|x|+|y|>1”的一个充分条件是( )
| A. | |x|≥1 | B. | |x+y|≥1 | C. | y≤-2 | D. | $|x|≥\frac{1}{2}$且$|y|≥\frac{1}{2}$ |
5.下列命题中正确的是( )
| A. | 经过平面外一点有且只有一条直线与已知平面垂直 | |
| B. | 经过平面外一点有且只有一条直线与已知平面平行 | |
| C. | 经过平面外一点有且只有一条直线与已知直线垂直 | |
| D. | 经过平面外一点有且只有一平面与已知平面垂直 |