题目内容

已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形.AA1=2,∠A1AB=∠A1AD=120°.
(1)求线段AC1的长;
(2)求异面直线AC1与A1D所成角的余弦值.
考点:异面直线及其所成的角,点、线、面间的距离计算
专题:空间角
分析:(1)设
AB
=
a
AD
=
b
AA1
=
c
,由于
AC1
=
a
+
b
+
c
,利用数量积运算性质
AC1
2
=(
a
+
b
+
c
)2
=
a
2
+
b
2
+
c
2
+2
a
b
+2
a
c
+2
b
c
即可得出.
(2)利用向量夹角公式cos<
A1D
AC1
=
A1D
AC1
|
A1D
||
AC1
|
即可得出.
解答: 解:(1)设
AB
=
a
AD
=
b
AA1
=
c

|
a
|=|
b
|=1,|
c
|=2
a
b
=0
a
c
=
b
c
=2×1×cos120°=-1.
AC1
=
a
+
b
+
c

AC1
2
=(
a
+
b
+
c
)2
=
a
2
+
b
2
+
c
2
+2
a
b
+2
a
c
+2
b
c
=1+1+4+0-2-2=2,
|
AC1
|
=
2

(2)
A1D
=
b
-
c

|
A1D
|
=
b
2
+
c
2
-2
b
c
=
1+22-2×(-1)
=
7

A1D
AC1
=(
b
-
c
)•(
a
+
b
+
c
)
=
a
b
+
b
2
-
a
c
-
c
2
=0+1-(-1)-22=-2.
cos<
A1D
AC1
=
A1D
AC1
|
A1D
||
AC1
|
=
-2
7
×
2
=-
14
7

∴异面直线AC1与A1D所成角的余弦值为
14
7
点评:本题考查了向量的平行六面体法则、数量积运算性质、向量夹角公式,考查了空间想象能力,考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网