题目内容
(1)求线段AC1的长;
(2)求异面直线AC1与A1D所成角的余弦值.
考点:异面直线及其所成的角,点、线、面间的距离计算
专题:空间角
分析:(1)设
=
,
=
,
=
,由于
=
+
+
,利用数量积运算性质
2=(
+
+
)2=
2+
2+
2+2
•
+2
•
+2
•
即可得出.
(2)利用向量夹角公式cos<
,
>=
即可得出.
| AB |
| a |
| AD |
| b |
| AA1 |
| c |
| AC1 |
| a |
| b |
| c |
| AC1 |
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| a |
| c |
| b |
| c |
(2)利用向量夹角公式cos<
| A1D |
| AC1 |
| ||||
|
|
解答:
解:(1)设
=
,
=
,
=
,
则|
|=|
|=1,|
|=2,
•
=0,
•
=
•
=2×1×cos120°=-1.
∵
=
+
+
,
∴
2=(
+
+
)2=
2+
2+
2+2
•
+2
•
+2
•
=1+1+4+0-2-2=2,
∴|
|=
.
(2)
=
-
,
∴|
|=
=
=
.
•
=(
-
)•(
+
+
)=
•
+
2-
•
-
2=0+1-(-1)-22=-2.
∴cos<
,
>=
=
=-
.
∴异面直线AC1与A1D所成角的余弦值为
.
| AB |
| a |
| AD |
| b |
| AA1 |
| c |
则|
| a |
| b |
| c |
| a |
| b |
| a |
| c |
| b |
| c |
∵
| AC1 |
| a |
| b |
| c |
∴
| AC1 |
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| a |
| c |
| b |
| c |
∴|
| AC1 |
| 2 |
(2)
| A1D |
| b |
| c |
∴|
| A1D |
|
| 1+22-2×(-1) |
| 7 |
| A1D |
| AC1 |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| b |
| a |
| c |
| c |
∴cos<
| A1D |
| AC1 |
| ||||
|
|
| -2 | ||||
|
| ||
| 7 |
∴异面直线AC1与A1D所成角的余弦值为
| ||
| 7 |
点评:本题考查了向量的平行六面体法则、数量积运算性质、向量夹角公式,考查了空间想象能力,考查了计算能力,属于中档题.
练习册系列答案
相关题目