题目内容

一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是
1
3

(1)求这名学生在途中遇到红灯的次数ξ的分布列;
(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;
(3)这名学生在途中至少遇到一次红灯的概率.
考点:离散型随机变量及其分布列
专题:概率与统计
分析:(1)由ξ~B(5,
1
3
)
,能求出这名学生在途中遇到红灯的次数ξ的分布列.
(2)η=k(k=0,1,2,3,4),也就是说{前k个是绿灯,第k+1个是红灯},η=5,也就是说(5个均为绿灯),则P(η=k)=(
2
3
)k
1
3
,k=0,1,2,3,4,由此能求出这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列.
(3)利用对立事件概率计算公式能求出这名学生在途中至少遇到一次红灯的概率.
解答: 解:(1)由于ξ~B(5,
1
3
)

则P(ξ=k)=
C
k
5
(
1
3
)k(
2
3
)5-k
,k=0,1,2,3,4,5;
所以ξ的分布列为:
ξ012345
P
32
243
80
243
80
243
40
243
10
243
1
243
(2)η=k(k=0,1,2,3,4),
也就是说{前k个是绿灯,第k+1个是红灯},η=5,
也就是说(5个均为绿灯),
则P(η=k)=(
2
3
)k
1
3
,k=0,1,2,3,4;
P(η=5)=(
2
3
)5=
32
243

所以η的分布列为:
η012345
P
1
3
2
9
4
27
8
81
16
243
32
243
(3)所求概率P(ξ≥1)=1-P(ξ=0)=1-(
2
3
)5=
211
243
点评:本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网