题目内容

11.(1)已知△ABC中A(2,0),B(4,0),C(2,2),求△ABC的外接圆方程
(2)过直线l:x+2y+1=0与圆C:x2+y2=8的交点,且圆心在直线y=x上的圆的方程.

分析 (1)设△ABC的外接圆方程为x2+y2+Dx+Ey+F=0,利用待定系数法能求出△ABC的外接圆方程.
(2)联立$\left\{\begin{array}{l}{x+2y+1=0}\\{{x}^{2}+{y}^{2}=8}\end{array}\right.$,求出交点坐标一,由圆心在直线y=x上,设圆心为O(a,b),由题意列出方程组求出圆心和半径,由此能求出圆的方程.

解答 解:(1)设△ABC的外接圆方程为x2+y2+Dx+Ey+F=0,
∵△ABC中A(2,0),B(4,0),C(2,2),
∴$\left\{\begin{array}{l}{4+2D+F=0}\\{16+4D+F=0}\\{8+2D+2E+F=0}\end{array}\right.$,解得D=-6,E=-2,F=8,
∴△ABC的外接圆方程为x2+y2-6x-2y+8=0.
(2)联立$\left\{\begin{array}{l}{x+2y+1=0}\\{{x}^{2}+{y}^{2}=8}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{-1+2\sqrt{39}}{5}}\\{y=\frac{-2-\sqrt{39}}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{-1-2\sqrt{39}}{5}}\\{y=\frac{-2+\sqrt{39}}{5}}\end{array}\right.$,
设圆心为O(a,b),由题意得:
$\left\{\begin{array}{l}{\sqrt{(\frac{-1-2\sqrt{39}}{5}-a)^{2}+(\frac{-2+\sqrt{39}}{5}-b)^{2}}=\sqrt{(\frac{-1+2\sqrt{39}}{5}-a)^{2}+(\frac{-2-\sqrt{39}}{5}-b)^{2}}}\\{a=b}\end{array}\right.$,
整理,得4($\frac{1}{5}+a$)=2($\frac{2}{5}+a$),解得a=b=0,
∴圆心O(0,0),半径r=$\sqrt{(\frac{-1-2\sqrt{39}}{5})^{2}+(\frac{-2+\sqrt{39}}{5})^{2}}$=2$\sqrt{2}$,
∴圆的方程为x2+y2=8.

点评 本题考查圆的方程的求法,是中档题,解题时要认真审题,注意圆的性质和待定系数法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网