题目内容

已知a,b,c都是正数,求证:
(1)
a2
b
+
b2
c
+
c2
a
≥a+b+c

(2)
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b
考点:不等式的证明
专题:选作题,不等式
分析:(1)利用b+
a2
b
≥2a,c+
b2
c
≥2b,a+
c2
a
≥2c,三个式子相加可得结论;
(2)该题是轮换式不等式的证明,可以利用基本不等式证
1
2
1
2a
+
1
2b
)≥
1
2
ab
1
a+b
1
2
1
2b
+
1
2c
)≥
1
2
bc
1
b+c
1
2
1
2c
+
1
2a
)≥
1
2
ca
1
c+a
,将三式相加可证得结论.
解答: 证明:(1)∵a,b,c都是正数,
∴b+
a2
b
≥2a,c+
b2
c
≥2b,a+
c2
a
≥2c,
三个式子相加可得b+
a2
b
+c+
b2
c
+a+
c2
a
≥2a+2b+2c,
a2
b
+
b2
c
+
c2
a
≥a+b+c

(2)∵a、b、c均为正实数,
1
2
1
2a
+
1
2b
)≥
1
2
ab
1
a+b
,当a=b时等号成立;
1
2
1
2b
+
1
2c
)≥
1
2
bc
1
b+c
,当b=c时等号成立;
1
2
1
2c
+
1
2a
)≥
1
2
ca
1
c+a
,当a=c时等号成立;
三个不等式相加即得
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

当且仅当a=b=c时等号成立.
点评:本题主要考查了不等式的证明,以及基本不等式的应用,同时考查了分析问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网