题目内容

已知数列{an}的前n项和Sn=2an-3•2n+4(n∈N*).
(1)证明:数列{
an
2n
}是等差数列;
(2)设bn=
4n
anan+1
,求数列{bn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由Sn=2an-3•2n+4(n∈N*),可得n=1时,a1=S1=2a1-6+4,解得a1.当n≥2时,an=Sn-Sn-1,可得
an
2n
-
an-1
2n-1
=
3
2
,即可证明;
(2)由(1)可得
an
2n
=1+
3
2
(n-1)
=
3n-1
2
,bn=
4n
anan+1
=
4n
2n(3n-1)×2n+1(3n+2)
=
1
6
(
1
3n-1
-
1
3n+2
)
,利用“裂项求和”即可得出.
解答: (1)证明:∵Sn=2an-3•2n+4(n∈N*),∴n=1时,a1=S1=2a1-6+4,解得a1=2.
当n≥2时,an=Sn-Sn-1=2an-3×2n+4-(2an-1-3×2n-1+4)
化为an=2an-1+3×2n-1
变形为
an
2n
-
an-1
2n-1
=
3
2

∴数列{
an
2n
}是等差数列,首项为
a1
2
=1,公差为
3
2

(2)解:由(1)可得
an
2n
=1+
3
2
(n-1)
=
3n-1
2

∴bn=
4n
anan+1
=
4n
2n(3n-1)×2n+1(3n+2)
=
1
6
(
1
3n-1
-
1
3n+2
)

∴数列{bn}的前n项和Tn=
1
6
[(
1
2
-
1
5
)+(
1
5
-
1
8
)
+…+(
1
3n-1
-
1
3n+2
)]

=
1
6
(
1
2
-
1
3n+2
)

=
1
12n+8
点评:本题考查了递推式的应用、等差数列的定义及其通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网