题目内容
已知数列{an}的前n项和Sn=2an-3•2n+4(n∈N*).
(1)证明:数列{
}是等差数列;
(2)设bn=
,求数列{bn}的前n项和Tn.
(1)证明:数列{
| an |
| 2n |
(2)设bn=
| 4n |
| anan+1 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由Sn=2an-3•2n+4(n∈N*),可得n=1时,a1=S1=2a1-6+4,解得a1.当n≥2时,an=Sn-Sn-1,可得
-
=
,即可证明;
(2)由(1)可得
=1+
(n-1)=
,bn=
=
=
(
-
),利用“裂项求和”即可得出.
| an |
| 2n |
| an-1 |
| 2n-1 |
| 3 |
| 2 |
(2)由(1)可得
| an |
| 2n |
| 3 |
| 2 |
| 3n-1 |
| 2 |
| 4n |
| anan+1 |
| 4n |
| 2n(3n-1)×2n+1(3n+2) |
| 1 |
| 6 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
解答:
(1)证明:∵Sn=2an-3•2n+4(n∈N*),∴n=1时,a1=S1=2a1-6+4,解得a1=2.
当n≥2时,an=Sn-Sn-1=2an-3×2n+4-(2an-1-3×2n-1+4),
化为an=2an-1+3×2n-1,
变形为
-
=
,
∴数列{
}是等差数列,首项为
=1,公差为
;
(2)解:由(1)可得
=1+
(n-1)=
,
∴bn=
=
=
(
-
),
∴数列{bn}的前n项和Tn=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
.
当n≥2时,an=Sn-Sn-1=2an-3×2n+4-(2an-1-3×2n-1+4),
化为an=2an-1+3×2n-1,
变形为
| an |
| 2n |
| an-1 |
| 2n-1 |
| 3 |
| 2 |
∴数列{
| an |
| 2n |
| a1 |
| 2 |
| 3 |
| 2 |
(2)解:由(1)可得
| an |
| 2n |
| 3 |
| 2 |
| 3n-1 |
| 2 |
∴bn=
| 4n |
| anan+1 |
| 4n |
| 2n(3n-1)×2n+1(3n+2) |
| 1 |
| 6 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
∴数列{bn}的前n项和Tn=
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
=
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3n+2 |
=
| 1 |
| 12n+8 |
点评:本题考查了递推式的应用、等差数列的定义及其通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
函数y=sinx在(-∞,+∞)的单调递增区间是( )
| A、[0,π] | ||||
B、[
| ||||
C、[-
| ||||
| D、[2kπ,π+2kπ](k∈Z) |
已知等差数列{an}的公差为2,若a1,a3,a4成等比例函数,则a2=( )
| A、-4 | B、-6 | C、-8 | D、-10 |