ÌâÄ¿ÄÚÈÝ
1£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ¶¥µãΪA£¬xÖáÉÏÓÐÒ»µãQ£¨2a£¬0£©£¬ÈôCÉÏ´æÔÚÒ»µãP£¬Ê¹AP¡ÍPQ£¬ÔòË«ÇúÏßÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | $e£¾\frac{{\sqrt{6}}}{2}$ | B£® | $1£¼e£¼\frac{{\sqrt{6}}}{2}$ | C£® | $e¡Ý\frac{{\sqrt{6}}}{3}$ | D£® | $1£¼e£¼\frac{{\sqrt{6}}}{3}$ |
·ÖÎö µãP£¨m£¬n£©£¬¸ù¾ÝAP¡ÍPQÀûÓÃÊýÁ¿»ýΪÁãËã³ö£¨m-a£©£¨2a-m£©-n2=0£¬½áºÏµãP£¨m£¬n£©ÔÚË«ÇúÏßÉÏÏûÈ¥n£¬µÃ¹ØÓÚmµÄÒ»Ôª¶þ´Î·½³Ì£º£¨m-a£©£¨2a-m£©-b2£¨$\frac{{m}^{2}}{{a}^{2}}$-1£©=0£¬´Ë·½³ÌµÄÒ»¸ö¸ùΪa£¬¶øÁíÒ»¸ö¸ùΪ´óÓÚaµÄʵÊý£¬Óɴ˽¨Á¢¹ØÓÚa¡¢b¡¢c²»µÈʽ¹ØÏµ£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ÀëÐÄÂÊeµÄȡֵ·¶Î§£®
½â´ð ½â£ºÉèµãP£¨m£¬n£©£¬¿ÉµÃ$\overrightarrow{AP}$=£¨m-a£¬n£©£¬$\overrightarrow{PQ}$=£¨2a-m£¬-n£©
¡ßAP¡ÍPQ£¬
¡à$\overrightarrow{AP}$•$\overrightarrow{PQ}$=£¨m-a£©£¨2a-m£©-n2=0¡£¨1£©
ÓÖ¡ßP£¨m£¬n£©ÔÚË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$ÉÏ
¡à$\frac{{m}^{2}}{{a}^{2}}-\frac{{n}^{2}}{{b}^{2}}=1$£¬µÃn2=b2£¨$\frac{{m}^{2}}{{a}^{2}}$-1£©¡£¨2£©
½«£¨2£©Ê½´úÈ루1£©Ê½£¬µÃ£¨m-a£©£¨2a-m£©-b2£¨$\frac{{m}^{2}}{{a}^{2}}$-1£©=0
»¯¼òÕûÀí£¬µÃ-$\frac{{c}^{2}}{{a}^{2}}$m2+3am+c2-3a2=0
´Ë·½³ÌµÄÒ»¸ùΪm1=a£¬ÁíÒ»¸ùΪm2=$\frac{3{a}^{3}-{ac}^{2}}{{c}^{2}}$£®
¡ßµãPÊÇË«ÇúÏßÉÏÒìÓÚÓÒ¶¥µãAµÄÒ»µã£¬
¡à$\frac{3{a}^{3}-{ac}^{2}}{{c}^{2}}$£¾a£¬µÃ3a2£¾2c2£¬¼´e2£¼$\frac{3}{2}$£¬
Óɴ˿ɵÃË«ÇúÏßµÄÀëÐÄÂÊeÂú×ã1£¼e£¼$\frac{\sqrt{6}}{2}$£¬
¹ÊÑ¡£ºB
µãÆÀ ±¾Ìâ¸ø³öË«ÇúÏßÉÏ´æÔÚÒ»µãP£¬µ½A£¨a£¬0£©ºÍQ£¨2a£¬0£©ËùÕŵĽǵÈÓÚ90¶È£¬ÇóË«ÇúÏßÀëÐÄÂʵÄȡֵ·¶Î§£¬×ÅÖØ¿¼²éÁËË«ÇúÏߵļòµ¥¼¸ºÎÐÔÖʺÍÖ±ÏßÓëË«ÇúÏß¹ØÏµµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
| A£® | £¨2£¬+¡Þ£© | B£® | [2£¬+¡Þ£© | C£® | £¨-¡Þ£¬-1£© | D£® | £¨-¡Þ£¬-1] |
| A£® | f£¨x£©=|x-1| | B£® | f£¨x£©=cos£¨x-$\frac{¦Ð}{2}$£© | C£® | f£¨x£©=0 | D£® | f£¨x£©=1+x2£¨x¡Ý0£© |
| A£® | -1 | B£® | 0 | C£® | 1 | D£® | 2 |
| A£® | ?x¡ÊR£¬x2+1¡Ü0ÇÒx¡Üsinx | B£® | ?x¡ÊR£¬x2+1¡Ü0»òx¡Üsinx | ||
| C£® | ?x0¡ÊR£¬x${\;}_{0}^{2}$+1¡Ü0ÇÒx0£¾sinx0 | D£® | ?x0¡ÊR£¬x${\;}_{0}^{2}$+1¡Ü0»òx0¡Üsinx0 |