ÌâÄ¿ÄÚÈÝ

1£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ¶¥µãΪA£¬xÖáÉÏÓÐÒ»µãQ£¨2a£¬0£©£¬ÈôCÉÏ´æÔÚÒ»µãP£¬Ê¹AP¡ÍPQ£¬ÔòË«ÇúÏßÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$e£¾\frac{{\sqrt{6}}}{2}$B£®$1£¼e£¼\frac{{\sqrt{6}}}{2}$C£®$e¡Ý\frac{{\sqrt{6}}}{3}$D£®$1£¼e£¼\frac{{\sqrt{6}}}{3}$

·ÖÎö µãP£¨m£¬n£©£¬¸ù¾ÝAP¡ÍPQÀûÓÃÊýÁ¿»ýΪÁãËã³ö£¨m-a£©£¨2a-m£©-n2=0£¬½áºÏµãP£¨m£¬n£©ÔÚË«ÇúÏßÉÏÏûÈ¥n£¬µÃ¹ØÓÚmµÄÒ»Ôª¶þ´Î·½³Ì£º£¨m-a£©£¨2a-m£©-b2£¨$\frac{{m}^{2}}{{a}^{2}}$-1£©=0£¬´Ë·½³ÌµÄÒ»¸ö¸ùΪa£¬¶øÁíÒ»¸ö¸ùΪ´óÓÚaµÄʵÊý£¬Óɴ˽¨Á¢¹ØÓÚa¡¢b¡¢c²»µÈʽ¹ØÏµ£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ÀëÐÄÂÊeµÄȡֵ·¶Î§£®

½â´ð ½â£ºÉèµãP£¨m£¬n£©£¬¿ÉµÃ$\overrightarrow{AP}$=£¨m-a£¬n£©£¬$\overrightarrow{PQ}$=£¨2a-m£¬-n£©
¡ßAP¡ÍPQ£¬
¡à$\overrightarrow{AP}$•$\overrightarrow{PQ}$=£¨m-a£©£¨2a-m£©-n2=0¡­£¨1£©
ÓÖ¡ßP£¨m£¬n£©ÔÚË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$ÉÏ
¡à$\frac{{m}^{2}}{{a}^{2}}-\frac{{n}^{2}}{{b}^{2}}=1$£¬µÃn2=b2£¨$\frac{{m}^{2}}{{a}^{2}}$-1£©¡­£¨2£©
½«£¨2£©Ê½´úÈ루1£©Ê½£¬µÃ£¨m-a£©£¨2a-m£©-b2£¨$\frac{{m}^{2}}{{a}^{2}}$-1£©=0
»¯¼òÕûÀí£¬µÃ-$\frac{{c}^{2}}{{a}^{2}}$m2+3am+c2-3a2=0
´Ë·½³ÌµÄÒ»¸ùΪm1=a£¬ÁíÒ»¸ùΪm2=$\frac{3{a}^{3}-{ac}^{2}}{{c}^{2}}$£®
¡ßµãPÊÇË«ÇúÏßÉÏÒìÓÚÓÒ¶¥µãAµÄÒ»µã£¬
¡à$\frac{3{a}^{3}-{ac}^{2}}{{c}^{2}}$£¾a£¬µÃ3a2£¾2c2£¬¼´e2£¼$\frac{3}{2}$£¬
Óɴ˿ɵÃË«ÇúÏßµÄÀëÐÄÂÊeÂú×ã1£¼e£¼$\frac{\sqrt{6}}{2}$£¬
¹ÊÑ¡£ºB

µãÆÀ ±¾Ìâ¸ø³öË«ÇúÏßÉÏ´æÔÚÒ»µãP£¬µ½A£¨a£¬0£©ºÍQ£¨2a£¬0£©ËùÕŵĽǵÈÓÚ90¶È£¬ÇóË«ÇúÏßÀëÐÄÂʵÄȡֵ·¶Î§£¬×ÅÖØ¿¼²éÁËË«ÇúÏߵļòµ¥¼¸ºÎÐÔÖʺÍÖ±ÏßÓëË«ÇúÏß¹ØÏµµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø