题目内容
14.已知命题p:x>k,q:$\frac{3}{x+1}$≥1,若p是q的必要不充分条件,则实数k的取值范围是( )| A. | (2,+∞) | B. | [2,+∞) | C. | (-∞,-1) | D. | (-∞,-1] |
分析 由$\frac{3}{x+1}$≥1,化为3≥x+1,解得x范围.利用p是q的必要不充分条件,即可得出.
解答 解:由$\frac{3}{x+1}$≥1,化为3≥x+1,解得x≤2.
∵p是q的必要不充分条件,
∴k>2.
故选:A.
点评 本题考查了简易逻辑的判定方法、不等式的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
4.平行直线l1:3x+4y-12=0与l2:6x+8y-15=0之间的距离为( )
| A. | $\frac{3}{10}$ | B. | $\frac{9}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{9}{5}$ |
5.已知函数f(x)=2cos2x+sin2x-1,则以下判断中错误的是( )
| A. | 函数f(x)在区间$[{\frac{π}{8},\frac{5π}{8}}]$上是减函数 | |
| B. | 直线x=$\frac{π}{8}$是函数f(x)图象的一条对称轴 | |
| C. | 若$x∈[{0,\frac{π}{2}}]$,则函数f(x)的值域是$[{0,\sqrt{2}}]$ | |
| D. | 函数f(x)的图象可由函数y=$\sqrt{2}$sin2x的图象向左平移$\frac{π}{8}$而得到 |
2.如图为某几何体的三视图,求该几何体的内切球的表面积为( )

| A. | $\frac{1}{4}π$ | B. | 3π | C. | 4π | D. | $\frac{4}{3}π$ |
6.如果两个非零向量$\overrightarrow{a}$和$\overrightarrow{b}$满足等式|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$应满足( )
| A. | $\overrightarrow{a}•\overrightarrow{b}$=0 | B. | $\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$| | C. | $\overrightarrow{a}•\overrightarrow{b}$=-|$\overrightarrow{a}$|•|$\overrightarrow{b}$| | D. | $\overrightarrow{a}$∥$\overrightarrow{b}$ |
1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使AP⊥PQ,则双曲线离心率的取值范围是( )
| A. | $e>\frac{{\sqrt{6}}}{2}$ | B. | $1<e<\frac{{\sqrt{6}}}{2}$ | C. | $e≥\frac{{\sqrt{6}}}{3}$ | D. | $1<e<\frac{{\sqrt{6}}}{3}$ |