ÌâÄ¿ÄÚÈÝ
13£®S2£¬ÕÛµþºóÖØºÏ²¿·Ö¡÷ACPµÄÃæ»ýΪS1£®
£¨¢ñ£©ÉèAB=xm£¬ÓÃx±íʾͼÖÐDPµÄ³¤¶È£¬²¢Ð´³öxµÄȡֵ·¶Î§£»
£¨¢ò£©ÇóÃæ»ýS2×î´óʱ£¬Ó¦ÔõÑùÉè¼Æ²ÄÁϵij¤ºÍ¿í£¿
£¨¢ó£©ÇóÃæ»ý£¨S1+2S2£©×î´óʱ£¬Ó¦ÔõÑùÉè¼Æ²ÄÁϵij¤ºÍ¿í£¿
·ÖÎö £¨¢ñ£©ÉèAB=xm£¬ÀûÓá÷ADP¡Õ¡÷CB'P£¬¹ÊPA=PC=x-y£¬½áºÏPA2=AD2+DP2£¬¼´¿ÉÓÃx±íʾͼÖÐDPµÄ³¤¶È£¬²¢Ð´³öxµÄȡֵ·¶Î§£»
£¨¢ò£©ÀûÓûù±¾²»µÈʽÇóÃæ»ýS2×î´óʱ£¬Éè¼Æ²ÄÁϵij¤ºÍ¿í£»
£¨¢ó£©ÇóÃæ»ý£¨S1+2S2£©£¬ÀûÓõ¼ÊýÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉµÃ³ö×î´óʱ£¬Éè¼Æ²ÄÁϵij¤ºÍ¿í£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬AB=x£¬BC=2-x£¬
ÒòΪx£¾2-x£¬¹Ê1£¼x£¼2£®¡£¨2·Ö£©
ÉèDP=y£¬ÔòPC=x-y£¬
ÒòΪ¡÷ADP¡Õ¡÷CB'P£¬¹ÊPA=PC=x-y£¬
ÓÉPA2=AD2+DP2£¬µÃ£¨x-y£©2=£¨2-x£©2+y2£¬$y=2£¨{1-\frac{1}{x}}£©£¬1£¼x£¼2$£®¡£¨4·Ö£©
£¨¢ò£©¼Ç¡÷ADPµÄÃæ»ýΪS2£¬Ôò${S_2}=£¨{1-\frac{1}{x}}£©£¨{2-x}£©$¡£¨5·Ö£©
=$3-£¨{x+\frac{2}{x}}£©¡Ü3-2\sqrt{2}$£¬
µ±ÇÒ½öµ±$x=\sqrt{2}¡Ê£¨{1£¬2}£©$ʱ£¬S2È¡µÃ×î´óÖµ£®¡£¨7·Ö£©
¹Êµ±²ÄÁϳ¤Îª$\sqrt{2}m$£¬¿íΪ$£¨{2-\sqrt{2}}£©m$ʱ£¬S2×î´ó£®¡£¨8·Ö£©
£¨¢ó£©${S_1}+2{S_2}=\frac{1}{2}x£¨{2-x}£©+£¨{1-\frac{1}{x}}£©£¨{2-x}£©=3-\frac{1}{2}£¨{{x^2}+\frac{4}{x}}£©$£¬1£¼x£¼2£®
ÓÚÊÇ$£¨{{S_1}+2{S_2}}£©'=-\frac{1}{2}£¨{2x-\frac{4}{x^2}}£©=\frac{{-{x^3}+2}}{x^2}=0$£¬¡à$x=\root{3}{2}$£®¡£¨11·Ö£©
¹ØÓÚxµÄº¯Êý£¨S1+2S2£©ÔÚ$£¨{1£¬\root{3}{2}}£©$ÉϵÝÔö£¬ÔÚ$£¨{\root{3}{2}£¬2}£©$Éϵݼõ£¬
ËùÒÔµ±$x=\root{3}{2}$ʱ£¬S1+2S2È¡µÃ×î´óÖµ£®¡£¨12·Ö£©
¹Êµ±²ÄÁϳ¤Îª$\root{3}{2}$m£¬¿íΪ$£¨{2-\root{3}{2}}£©$mʱ£¬S1+2S2×î´ó£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²é»ù±¾²»µÈʽ£¬µ¼Êý֪ʶµÄÔËÓã¬È·¶¨º¯ÊýµÄ±í´ïʽÊǹؼü£®
| A£® | 16 | B£® | 8 | C£® | 4 | D£® | 1 |
| A£® | $\frac{m}{n}$ | B£® | $\frac{n}{1-m}$ | C£® | $\frac{1-n}{m}$ | D£® | $\frac{1+n}{1+m}$ |
| A£® | B£® | C£® | D£® |