题目内容
11.在△ABC中,角A,B,C的对边长是a,b,c公差为1的等差数列,且C=2A.(Ⅰ)求a,b,c;
(Ⅱ)求△ABC的面积.
分析 (Ⅰ)由已知得a=b-1,c=b+1,由余弦定理得a2=b2+c2-2bccosA,结合正弦定理即可求a,b,c的值.
(Ⅱ)由(Ⅰ)中的边长,利用余弦定理得a2=b2+c2-2bccosA求sinA,即可求△ABC的面积.
解答 解:(Ⅰ)由已知得a=b-1,c=b+1,由余弦定理得a2=b2+c2-2bccosA
整理得:b+4=2(b+1)cosA …①
由C=2A,得sinC=sin2A=2sinAcosA
由正弦定理得c=2acosA,即cosA=$\frac{c}{2a}=\frac{b+1}{2(b-1)}$…②
由①②整理得:b=5,
∴a=4,c=6;
(Ⅱ)由(Ⅰ)得cosA=$\frac{c}{2a}=\frac{b+1}{2(b-1)}$=$\frac{3}{4}$
∴sinA=$\sqrt{1-co{s}^{2}A}=\frac{\sqrt{7}}{4}$,
故得△ABC的面积$S=\frac{1}{2}bcsinA=\frac{15\sqrt{7}}{4}$.
点评 本题考查了等差数列的性质、正余弦定理的灵活运用能力,属于基础题.
练习册系列答案
相关题目
1.直线l:4x-5y=20经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个焦点和虚轴的一个端点,则C的离心率为( )
| A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{4}$ | D. | $\frac{4}{5}$ |
2.《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则落在其内切圆内的概率是( )
| A. | $\frac{3π}{10}$ | B. | $\frac{π}{20}$ | C. | $\frac{3π}{20}$ | D. | $\frac{π}{10}$ |
19.已知角α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则α=( )
| A. | 215° | B. | 225° | C. | 235° | D. | 245° |
6.《九章算术》是我国古代的优秀数学著作,在人类历史上第一次提出负数的概念,内容涉及方程、几何、数列、面积、体积的计算等多方面.书的第6卷19题,“今有竹九节,下三节容量四升,上四节容量三升.”如果竹由下往上均匀变细(各节容量可视为等差数列),则中间剩下的两节容量是多少升( )
| A. | $2\frac{23}{66}$ | B. | $2\frac{3}{22}$ | C. | $2\frac{61}{66}$ | D. | $1\frac{10}{11}$ |
1.函数f(x)=sinωx(?>0)的图象向右平移$\frac{π}{12}$个单位得到函数y=g(x)的图象,并且函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3},\frac{π}{2}$]上单调递减,则实数ω的值为( )
| A. | $\frac{7}{4}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{4}$ |