题目内容
1.函数f(x)=sinωx(?>0)的图象向右平移$\frac{π}{12}$个单位得到函数y=g(x)的图象,并且函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3},\frac{π}{2}$]上单调递减,则实数ω的值为( )| A. | $\frac{7}{4}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{4}$ |
分析 根据平移变换的规律求解出g(x),根据函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3},\frac{π}{2}$]上单调递减可得x=$\frac{π}{3}$时,g(x)取得最大值,求解可得实数ω的值.
解答 解:由函数f(x)=sinωx(?>0)的图象向右平移$\frac{π}{12}$个单位得到g(x)=sin[ω(x$-\frac{π}{12}$)]=sin(ωx-$\frac{ωπ}{12}$),
函数g(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上单调递增,在区间[$\frac{π}{3},\frac{π}{2}$]上单调递减,可得x=$\frac{π}{3}$时,g(x)取得最大值,
即(ω×$\frac{π}{3}$-$\frac{ωπ}{12}$)=$\frac{π}{2}+2kπ$,k∈Z,?>0.
当k=0时,解得:ω=2.
故选:C.
点评 本题主要考查了三角函数图象的平移变换和性质的灵活运用.属于基础题.
练习册系列答案
相关题目
16.为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$(n=a+b+c+d)
独立性检验临界值表:
| 喜好体育运动 | 不喜好体育运动 | 合计 | |
| 男生 | 20 | 5 | 25 |
| 女生 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$(n=a+b+c+d)
独立性检验临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
6.设集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=$\sqrt{{x}^{2}-1}$},则下列结论中正确的是( )
| A. | A=B | B. | A⊆B | C. | B⊆A | D. | A∩B={x|x≥1} |
11.设x,y满足约束条件$\left\{\begin{array}{l}x≥y\\ y≥4x-3\\ x≥0,y≥0\end{array}\right.$,若目标函数2z=2x+ny(n>0),z的最大值为2,则$y=tan({nx+\frac{π}{6}})$的图象向右平移$\frac{π}{6}$后的表达式为( )
| A. | $y=tan({2x+\frac{π}{6}})$ | B. | $y=cot({x-\frac{π}{6}})$ | C. | $y=tan({2x-\frac{π}{6}})$ | D. | y=tan2x |