ÌâÄ¿ÄÚÈÝ

20£®ÒÑÖª²»ºãΪÁãµÄº¯Êýf£¨x£©ÔÚ¶¨ÒåÓò[0£¬1]ÉϵÄͼÏóÁ¬Ðø²»¼ä¶Ï£¬Âú×ãÌõ¼þf£¨0£©=f£¨1£©=0£¬ÇÒ¶ÔÈÎÒâx1£¬x2¡Ê[0£¬1]¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-x2|£¬Ôò¶ÔÏÂÁÐËĸö½áÂÛ£º
¢ÙÈôf£¨1-x£©=f£¨x£©ÇÒ0¡Üx¡Ü$\frac{1}{2}$ʱ£¬f£¨x£©=$\frac{1}{20}$x£¨x-$\frac{1}{2}$£©£¬Ôòµ±$\frac{1}{2}$£¼x¡Ü1ʱ£¬f£¨x£©=$\frac{1}{20}$£¨1-x£©£¨$\frac{1}{2}$-x£©£»
¢ÚÈô¶Ô?x¡Ê[0£¬1]¶¼ÓÐf£¨1-x£©=-f£¨x£©£¬Ôòy=f£¨x£©ÖÁÉÙÓÐ3¸öÁãµã£»
¢Û¶Ô?x¡Ê[0£¬1]£¬|f£¨x£©|¡Ü$\frac{1}{6}$ºã³ÉÁ¢£»
¢Ü¶Ô?x1£¬x2¡Ê[0£¬1]£¬|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{6}$ºã³ÉÁ¢£®
ÆäÖÐÕýÈ·µÄ½áÂÛ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

·ÖÎö ¸ù¾ÝÒÑÖªÖÐf£¨0£©=f£¨1£©=0£¬ÇÒ¶ÔÈÎÒâx1£¬x2¡Ê[0£¬1]¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-x2|£¬ÖðÒ»·ÖÎöËĸö½áÂÛµÄÕæ¼Ù£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£ºÓÉf£¨1-x£©=f£¨x£©µÃº¯Êýf£¨x£©Í¼Ïó¹ØÓÚÖ±Ïßx=$\frac{1}{2}$¶Ô³Æ£¬
Èô0¡Üx¡Ü$\frac{1}{2}$ʱ£¬f£¨x£©=$\frac{1}{20}$x£¨x-$\frac{1}{2}$£©£¬Ôòµ±$\frac{1}{2}$£¼x¡Ü1ʱ£¬f£¨x£©=$\frac{1}{20}$£¨1-x£©£¨$\frac{1}{2}$-x£©£¬¹Ê¢ÙÕýÈ·£»
¡ßf£¨1-x£©=-f£¨x£©£¬¹Êº¯ÊýͼÏó¹ØÓÚ£¨$\frac{1}{2}$£¬0£©¶Ô³Æ£¬
ÓÖÓÉf£¨0£©=f£¨1£©=0£¬
¹Êº¯Êýf£¨x£©ÖÁÉÙÓÐ3¸öÁãµã0£¬$\frac{1}{2}$£¬1£®¹Ê¢ÚÕýÈ·£»
¡ßµ±0¡Üx¡Ü$\frac{1}{2}$ʱ£¬|f£¨x£©|¡Ü$\frac{1}{3}$x¡Ü$\frac{1}{6}$£»
µ±$\frac{1}{2}$£¼x¡Ü1ʱ£¬Ôò1-x¡Ü$\frac{1}{2}$£¬
|f£¨x£©|=|f£¨x£©-f£¨1£©|¡Ü$\frac{1}{3}$£¨1-x£©¡Ü$\frac{1}{3}¡Á\frac{1}{2}$=$\frac{1}{6}$£®
¡à?x¡Ê[0£¬1]£¬|f£¨x£©|¡Ü$\frac{1}{6}$ºã³ÉÁ¢£¬¹Ê¢ÛÕýÈ·£¬
Éè?x1£¬x2¡Ê[0£¬1]£¬µ±|x1-x2|¡Ü$\frac{1}{2}$ʱ£¬|f£¨x1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-x2|¡Ü$\frac{1}{6}$£¬
µ±|x1-x2|£¾$\frac{1}{2}$ʱ£¬|f£¨x1£©-f£¨x2£©|=|f£¨x1£©-f£¨0£©+f£¨1£©-f£¨x2£©|
¡Ü|f£¨x1£©-f£¨0£©|+|f£¨1£©-f£¨x2£©|¡Ü$\frac{1}{3}$|x1-0|+$\frac{1}{3}$|1-x2|
=$\frac{1}{3}$¡Á1+$\frac{1}{3}$£¨1-x2£©=$\frac{1}{3}$-$\frac{1}{3}$£¨x2-x1£©¡Ü$\frac{1}{3}$-$\frac{1}{3}$¡Á$\frac{1}{2}$=$\frac{1}{6}$£®¹Ê¢ÜÕýÈ· 
¹ÊÑ¡D£®

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁ˺¯ÊýµÄ¶Ô³ÆÐÔ£¬º¯Êýºã³ÉÁ¢£¬º¯ÊýµÄÁãµã£¬¾ø¶ÔÖµÈý½Ç²»µÈʽµÈ֪ʶµã£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø