题目内容
19.椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦点为$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$、$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$为椭圆上的一点,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则△F1PF2的面积为4.分析 设|PF1|=m,|PF2|=n,由于∠F1PF2=90°,根据勾股定理与椭圆的定义可得m+n=2a=6,m2+n2=(2c)2=20,解出mn即可
解答 解:设|PF1|=m,|PF2|=n,∵∠F1PF2=90°,
根据勾股定理与椭圆的定义可得m+n=2a=6,m2+n2=(2c)2=20,解出mn=8,△F1PF2的面积为$\frac{1}{2}$mn=4.
故答案为:4
点评 本题考查了焦点三角形的面积,要充分利用定义和平面几何的知识.属于基础题.
练习册系列答案
相关题目
10.设$a={log_3}\frac{1}{2}$,$b={({\frac{1}{2}})^3}$,$c={3^{\frac{1}{2}}}$,则( )
| A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
14.已知椭圆的标准方程为${x^2}+\frac{y^2}{10}=1$,则椭圆的焦点坐标为( )
| A. | (-3,0),(3,0) | B. | (0,-3),(0,3) | C. | (-$\sqrt{10}$,0),($\sqrt{10}$,0) | D. | (0,-$\sqrt{10}$),(0,$\sqrt{10}$) |
4.若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且当x∈[-1,0)时,$f(x)=\frac{{{x^2}+1}}{2}$,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
11.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=( )
| A. | 1+log35 | B. | 2+log35 | C. | 12 | D. | 10 |
9.若双曲线$\frac{x^2}{a^2}-{y^2}=1({a>0})$的一个焦点为(2,0),则a为( )
| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 5 | D. | 2 |