题目内容

10.设$a={log_3}\frac{1}{2}$,$b={({\frac{1}{2}})^3}$,$c={3^{\frac{1}{2}}}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

分析 利用指数函数、对数函数单调性直接求解.

解答 解:∵$a={log_3}\frac{1}{2}$<log31=0,
0<$b={({\frac{1}{2}})^3}$<$(\frac{1}{2})^{0}$=1,
$c={3^{\frac{1}{2}}}$>30=1,
∴a<b<c.
故选:A.

点评 本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意指数函数、对数函数单调性的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网