题目内容

16.设a=log${\;}_{\frac{1}{2}}$3,b=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,c=2${\;}^{\frac{1}{3}}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c?

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=log${\;}_{\frac{1}{2}}$3<0,b=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$∈(0,1),c=2${\;}^{\frac{1}{3}}$>1,
∴a<b<c.
故选:A.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网