题目内容

7.已知函数f(x)=$\left\{\begin{array}{l}4\;|{\;{{log}_2}x\;}|\;\;\;\;\;0<x<2\\ \frac{1}{2}{x^2}-5x+12\;\;\;\;\;x≥2\end{array}$,若存在实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),若d>c>b>a>0,则abc(d-4)的取值范围是(  )
A.(8,9)B.(8,9]C.(12,32)D.[12,32)

分析 根据图象可判断:$\frac{1}{2}$<a<1,1<b<2,2<c<4,6<d<8,推出ab的值,利用二次函数的值域,求解表达式的范围即可.

解答 解:若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0
根据图象可判断:$\frac{1}{2}$<a<1,1<b<2,2<c<4,6<d<8,
由二次函数的对称性可知c+d=10.
∵f(a)=f(b),可得:-4log2a=4log2b,
可得ab=1.
abc(d-4)=c(d-4)=c(6-c)=6c-c2=9-(c-3)2
∵2<c<4,∴c-3∈(-1,1),(c-3)2∈[0,1)
∴9-(c-3)2∈(8,9].
故选:B.

点评 本题综合考查了函数图象的运用,求解两个图象的交点问题,运用动的观点解决,理解好题意是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网