题目内容

已知函数f(x)=alnx(a>0),e为自然对数的底数.
(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0时,求证:f(x)≥a(1-
1
x
);
(Ⅲ)在区间(1,e)上
f(x)
x-1
>1恒成立,求实数a的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)求函数的导数,根据函数导数和切线斜率之间的关系即可求实数a的值;
(Ⅱ)构造函数,利用导数证明不等式即可;
(Ⅲ)利用参数分离法结合导数的应用即可得到结论.
解答: 解答:(I)函数的f(x)的导数f′(x)=
a
x

∵过点A(2,f(2))的切线斜率为2,
∴f′(2)=
a
2
=2,解得a=4.…(2分)
(Ⅱ)令g(x)=f(x)-a(1-
1
x
)=a(lnx-1+
1
x
);
则函数的导数g′(x)=a(
1
x
-
1
x2
).…(4分)
令g′(x)>0,即a(
1
x
-
1
x2
)>0,解得x>1,
∴g(x)在(0,1)上递减,在(1,+∞)上递增.
∴g(x)最小值为g(1)=0,
故f(x)≥a(1-
1
x
)成立.…(6分)
(Ⅲ)令h(x)=alnx+1-x,则h′(x)=
a
x
-1,
令h′(x)>0,解得x<a.…(8分)
当a>e时,h(x)在(1,e)是增函数,所以h(x)>h(1)=0.…(9分)
当1<a≤e时,h(x)在(1,a)上递增,(a,e)上递减,
∴只需h(x)≥0,即a≥e-1.…(10分)
当a≤1时,h(x)在(1,e)上递减,则需h(e)≥0,
∵h(e)=a+1-e<0不合题意.…(11分)
综上,a≥e-1…(12分)
点评:本题主要考查导数的综合应用,要求熟练掌握导数的几何意义,函数单调性最值和导数之间的关系,考查学生的综合应用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网