题目内容
| A、1个 | B、2个 | C、3个 | D、4个 |
考点:相似三角形的判定
专题:选作题,立体几何
分析:根据角平分线的定义可得∠BAE=45°,然后求出∠BAO=60°,再根据矩形的对角线互相平分且相等可得OA=OB,然后判断出△AOB是等边三角形,然后求出△ODC也是等边三角形,判断出①正确;求出AC=2AB,再根据垂线段最短可得BC<AC,判断出②错误;判断出△ABE是等腰直角三角形,然后求出AB=BE,再求出BO=BE,根据等腰三角形两底角相等求出∠BOE=75°,然后求出∠AOE=135°,判断出③⑤正确;根据等底等高的三角形的面积相等可得S△AOE=S△COE,判断出④正确.
解答:
解:∵矩形ABCD中,AE平分∠BAD,
∴∠BAE=45°,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=45°+15°=60°,
又∵矩形中OA=OB=OC=OD,
∴△AOB是等边三角形,
∴∠AOB=∠COD=60°,
∴△ODC是等边三角形,故①正确;
由等边三角形的性质,AB=OA,
∴AC=2AB,
由垂线段最短BC<AC,
∴BC<2AB,故②错误;
∵∠BAE=45°,∠ABE=90°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∴BO=BE,
∵∠COB=180°-60°=120°,
∴∠BOE=
(180°-30°)=75°,
∴∠AOE=∠AOB+∠BOE=60°+75°=135°,∠AEO=30°,故③⑤正确;
∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,
∴S△AOE=S△COE,故④正确;
综上所述,正确的结论是①③④⑤.
故选:D.
∴∠BAE=45°,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=45°+15°=60°,
又∵矩形中OA=OB=OC=OD,
∴△AOB是等边三角形,
∴∠AOB=∠COD=60°,
∴△ODC是等边三角形,故①正确;
由等边三角形的性质,AB=OA,
∴AC=2AB,
由垂线段最短BC<AC,
∴BC<2AB,故②错误;
∵∠BAE=45°,∠ABE=90°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∴BO=BE,
∵∠COB=180°-60°=120°,
∴∠BOE=
| 1 |
| 2 |
∴∠AOE=∠AOB+∠BOE=60°+75°=135°,∠AEO=30°,故③⑤正确;
∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,
∴S△AOE=S△COE,故④正确;
综上所述,正确的结论是①③④⑤.
故选:D.
点评:本题考查了矩形的性质,等边三角形的判定与性质,等腰三角形的性质,垂线段最短,等底等高的三角形的面积相等,综合题,但难度不大,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.
练习册系列答案
相关题目
若a=20.5,b=logπ3,c=log
e,则( )
| 1 |
| 2 |
| A、a>b>c |
| B、b>a>c |
| C、c>a>b |
| D、b>c>a |
△ABC的边BC在平面 α内,A不在平面 α内,△ABC与α所成的角为θ(锐角),AA′⊥α,则下列结论中成立的是( )
| A、S△ABC=S△A′BC•cosθ |
| B、S△A′BC=S△ABC•cosθ |
| C、S△A′BC=S△ABC•sinθ |
| D、S△ABC=S△A′BC•sinθ |
F1、F2是椭圆
+y2=1的左右焦点,M是椭圆上一点,若
•
=0,则M到y轴的距离为( )
| x2 |
| 4 |
| MF1 |
| MF2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知随机变量ξ~B(9,
)则使P(ξ=k)取得最大值的k值为( )
| 1 |
| 5 |
| A、2 | B、3 | C、4 | D、5 |