ÌâÄ¿ÄÚÈÝ
19£®Ä³µØÇøÄ⽨Á¢Ò»¸öÒÕÊõ²«Îï¹Ý£¬²ÉÈ¡¾º±êµÄ·½Ê½´Ó¶à¼Ò½¨Öþ¹«Ë¾Ñ¡È¡Ò»¼Ò½¨Öþ¹«Ë¾£¬¾¹ý²ã²ãɸѡ£¬¼×¡¢ÒÒÁ½¼Ò½¨Öþ¹«Ë¾½øÈë×îºóµÄÕб꣮ÏÖ´Ó½¨ÖþÉè¼ÆÔºÆ¸Çëר¼ÒÉè¼ÆÁËÒ»¸öÕб귽°¸£ºÁ½¼Ò¹«Ë¾´Ó6¸öÕбê×ÜÊÇÖÐËæ»ú³éÈ¡3¸ö×ÜÌ⣬ÒÑÖªÕâ6¸öÕбêÎÊÌâÖУ¬¼×¹«Ë¾¿ÉÕýÈ·»Ø´ðÆäÖÐ4µÀÌâÄ¿£¬¶øÒÒ¹«Ë¾ÄÜÕýÃæ»Ø´ðÿµÀÌâÄ¿µÄ¸ÅÂʾùΪ$\frac{2}{3}$£¬¼×¡¢ÒÒÁ½¼Ò¹«Ë¾¶ÔÿÌâµÄ»Ø´ð¶¼ÊÇÏà¶ÀÁ¢£¬»¥²»Ó°ÏìµÄ£®£¨1£©Çó¼×¡¢ÒÒÁ½¼Ò¹«Ë¾¹²´ð¶Ô2µÀÌâÄ¿µÄ¸ÅÂÊ£»
£¨2£©Çë´ÓÆÚÍûºÍ·½²îµÄ½Ç¶È·ÖÎö£¬¼×¡¢ÒÒÁ½¼ÒÄļҹ«Ë¾¾º±ê³É¹¦µÄ¿ÉÄÜÐÔ¸ü´ó£¿
·ÖÎö £¨1£©ÀûÓöÀÁ¢Öظ´ÊÔÑéµÄ¸ÅÂʹ«Ê½Çó½â¼×¡¢ÒÒÁ½¼Ò¹«Ë¾¹²´ð¶Ô2µÀÌâÄ¿µÄ¸ÅÂÊ£®
£¨2£©Éè¼×¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâÊýΪX£¬ÔòXµÄȡֵ·Ö±ðΪ1£¬2£¬3£®Çó³ö¸ÅÂÊ£¬µÃµ½XµÄ·Ö²¼ÁÐÇó½âÆÚÍû£»ÒÒ¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâΪY£¬ÔòYȡֵ·Ö±ðΪ0£¬1£¬2£¬3£®Çó³ö¸ÅÂʵõ½·Ö²¼ÁУ¬Çó³öÆÚÍû¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬ËùÇó¸ÅÂÊ$P=\frac{C_4^1C_2^2}{C_6^3}¡ÁC_3^1{£¨{\frac{2}{3}}£©^1}{£¨{1-\frac{2}{3}}£©^2}+\frac{C_4^2C_2^1}{C_6^3}¡Á{£¨{1-\frac{2}{2}}£©^3}=\frac{1}{15}$£®
£¨2£©Éè¼×¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâÊýΪX£¬ÔòXµÄȡֵ·Ö±ðΪ1£¬2£¬3.$P£¨{X=1}£©=\frac{C_4^1C_2^2}{C_6^3}=\frac{1}{5}$£¬$P£¨X=2£©=\frac{C_4^2C_2^1}{C_6^3}=\frac{3}{5}$£¬$P£¨{X=3}£©=\frac{C_4^3C_2^0}{C_6^3}=\frac{1}{5}$£®
ÔòXµÄ·Ö²¼ÁÐΪ£º
| X | 1 | 2 | 3 |
| P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
ÉèÒÒ¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâΪY£¬ÔòYȡֵ·Ö±ðΪ0£¬1£¬2£¬3.$P£¨{Y=0}£©=\frac{1}{27}$£¬$P£¨{Y=1}£©=C_3^1¡Á\frac{2}{3}¡Á{£¨{\frac{1}{3}}£©^2}=\frac{2}{9}$£¬$P£¨{Y=2}£©=C_3^2¡Á{£¨{\frac{2}{3}}£©^2}¡Á\frac{1}{3}=\frac{4}{9}$£¬$P£¨{Y=3}£©={£¨{\frac{2}{3}}£©^3}=\frac{8}{27}$
ÔòYµÄ·Ö²¼ÁÐΪ£º
| Y | 0 | 1 | 2 | 3 |
| P | $\frac{1}{27}$ | $\frac{2}{9}$ | $\frac{4}{9}$ | $\frac{8}{27}$ |
ÓÉE£¨X£©=D£¨Y£©£¬D£¨X£©£¼D£¨Y£©¿ÉµÃ£¬¼×¹«Ë¾¾º±ê³É¹¦µÄ¿ÉÄÜÐÔ¸ü´ó£®
µãÆÀ ±¾Ì⿼²é¶ÀÁ¢Öظ´ÊÔÑé¸ÅÂÊÒÔ¼°·Ö²¼ÁÐÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÒÑÖªÔ²MÓëÖ±Ïß3x-4y=0¼°3x-4y+10=0¶¼ÏàÇУ¬Ô²ÐÄÔÚÖ±Ïßy=-x-4ÉÏ£¬ÔòÔ²MµÄ·½³ÌΪ£¨¡¡¡¡£©
| A£® | £¨x+3£©2+£¨y-1£©2=1 | B£® | £¨x-3£©2+£¨y+1£©2=1 | C£® | £¨x+3£©2+£¨y+1£©2=1 | D£® | £¨x-3£©2+£¨y-1£©2=1 |
11£®ÒÑ֪˫ÇúÏߦ££º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏßΪl£¬Ô²C£º£¨x-a£©2+y2=8Óël½»ÓÚA£¬BÁ½µã£¬Èô¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇÒ$\overrightarrow{OB}=5\overrightarrow{OA}$£¨ÆäÖÐOÎª×ø±êԵ㣩£¬ÔòË«ÇúÏߦ£µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{{\sqrt{13}}}{3}$ | B£® | $\frac{{2\sqrt{13}}}{3}$ | C£® | $\frac{{\sqrt{13}}}{5}$ | D£® | $\frac{{2\sqrt{13}}}{5}$ |
8£®
ijÖÖ²úÆ·µÄÖÊÁ¿ÒÔÆäÖÊÁ¿Ö¸±êºâÁ¿£¬²¢ÒÀ¾ÝÖÊÁ¿Ö¸±êÖµ»®·ÖµÈ¼¶Èç±í£º
´ÓijÆóÒµÉú²úµÄÕâÖÖ²úÆ·ÖгéÈ¡200¼þ£¬¼ì²âºóµÃµ½ÈçÏÂµÄÆµÂÊ·Ö²¼Ö±·½Í¼£º
£¨1£©¸ù¾ÝÒÔÉϳéÑùµ÷²éµÄÊý¾Ý£¬ÄÜ·ñÈÏΪ¸ÃÆóÒµÉú²úÕâÖÖ²úÆ··ûºÏ¡°Ò»¡¢¶þµÈÆ·ÖÁÉÙÒªÕ¼µ½È«²¿²úÆ·µÄ92%µÄ¹æ¶¨¡±£¿
£¨2£©ÔÚÑù±¾ÖУ¬°´²úÆ·µÈ¼¶Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡8¼þ£¬ÔÙ´ÓÕâ8¼þ²úÆ·ÖÐËæ»ú³éÈ¡4¼þ£¬Çó³éÈ¡µÄ4¼þ²úÆ·ÖУ¬Ò»¡¢¶þ¡¢ÈýµÈÆ·¶¼ÓеĸÅÂÊ£»
£¨3£©¸ÃÆóҵΪÌá¸ß²úÆ·µÄÖÊÁ¿£¬¿ªÕ¹ÁË¡°ÖÊÁ¿ÌáÉýÔ¡±»î¶¯£¬»î¶¯ºóÔÙ³éÑù¼ì²â£¬²úÆ·ÖÊÁ¿Ö¸±êÖµX½üËÆÂú×ãX¡«N£¨218£¬140£©£¬Ôò¡°ÖÊÁ¿ÌáÉýÔ¡±»î¶¯ºóµÄÖÊÁ¿Ö¸±êÖµµÄ¾ùÖµ±È»î¶¯Ç°´óÔ¼ÌáÉýÁ˶àÉÙ£¿
| ÖÊÁ¿Ö¸±êÖµm | m£¼185 | 185¡Üm£¼205 | M¡Ý205 |
| µÈ¼¶ | ÈýµÈÆ· | ¶þµÈÆ· | Ò»µÈÆ· |
£¨1£©¸ù¾ÝÒÔÉϳéÑùµ÷²éµÄÊý¾Ý£¬ÄÜ·ñÈÏΪ¸ÃÆóÒµÉú²úÕâÖÖ²úÆ··ûºÏ¡°Ò»¡¢¶þµÈÆ·ÖÁÉÙÒªÕ¼µ½È«²¿²úÆ·µÄ92%µÄ¹æ¶¨¡±£¿
£¨2£©ÔÚÑù±¾ÖУ¬°´²úÆ·µÈ¼¶Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡8¼þ£¬ÔÙ´ÓÕâ8¼þ²úÆ·ÖÐËæ»ú³éÈ¡4¼þ£¬Çó³éÈ¡µÄ4¼þ²úÆ·ÖУ¬Ò»¡¢¶þ¡¢ÈýµÈÆ·¶¼ÓеĸÅÂÊ£»
£¨3£©¸ÃÆóҵΪÌá¸ß²úÆ·µÄÖÊÁ¿£¬¿ªÕ¹ÁË¡°ÖÊÁ¿ÌáÉýÔ¡±»î¶¯£¬»î¶¯ºóÔÙ³éÑù¼ì²â£¬²úÆ·ÖÊÁ¿Ö¸±êÖµX½üËÆÂú×ãX¡«N£¨218£¬140£©£¬Ôò¡°ÖÊÁ¿ÌáÉýÔ¡±»î¶¯ºóµÄÖÊÁ¿Ö¸±êÖµµÄ¾ùÖµ±È»î¶¯Ç°´óÔ¼ÌáÉýÁ˶àÉÙ£¿
9£®ÒÑÖªÊýÁÐ{an}Âú×ãµÝÍÆ¹ØÏµ£ºan+1=$\frac{{a}_{n}}{{a}_{n}+1}$£¬a1=$\frac{1}{2}$£¬Ôòa2017=£¨¡¡¡¡£©
| A£® | $\frac{1}{2016}$ | B£® | $\frac{1}{2017}$ | C£® | $\frac{1}{2018}$ | D£® | $\frac{1}{2019}$ |