题目内容

14.已知f(x)是定义在R上的偶函数,且在(-∞,0)上单调递增,若实数a满足f(2|a-1|)>f(4),则a的取值范围是(  )
A.(-∞,-1)B.(-∞,1)∪(3,+∞)C.(-1,3)D.(3,+∞)

分析 根据函数奇偶性和单调性的关系将不等式进行转化求解即可.

解答 解:∵f(x)是定义在R上的偶函数,且在(-∞,0)上单调递增,
∴f(x)在(0,+∞)是减函数,
则不等式f(2|a-1|)>f(4),得2|a-1|<4,
即|a-1|<2,
得-2<a-1<2,
得-1<a<3,
故选:C

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性的关系,将不等式进行转化是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网