ÌâÄ¿ÄÚÈÝ
3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ9¦Ñ2cos2¦È+16¦Ñ2sin2¦È=144£¬ÇÒÖ±ÏßlÓëÇúÏßC½»ÓÚP£¬QÁ½µã£®£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì¼°Ö±Ïßlºã¹ýµÄ¶¥µãAµÄ×ø±ê£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Èô|AP|•|AQ|=9£¬ÇóÖ±ÏßlµÄÆÕͨ·½³Ì£®
·ÖÎö £¨¢ñ£©ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌÄÜÇó³öÖ±Ïßlºã¹ýµÄ¶¨µãAµÄ×ø±ê£®
£¨¢ò£©°ÑÖ±ÏßlµÄ·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÖУ¬µÃ£º£¨9+7sin2¦Á£©t2+36tcos¦Á-9¡Á12=0£®ÓÉtµÄ¼¸ºÎÒâÒåÖª|AP|=|t1|£¬|AQ|=|t2|£¬µãAÔÚÍÖÔ²ÄÚ£¬Õâ¸ö·½³Ì±ØÓÐÁ½¸öʵ¸ù£¬´Ó¶øµÃµ½|$\frac{-36¡Á3}{9+7si{n}^{2}¦Á}$|=9£¬½ø¶øÇó³ötan$¦Á=¡À\frac{\sqrt{3}}{2}$£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ9¦Ñ2cos2¦È+16¦Ñ2sin2¦È=144£¬
x=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1£®
¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÖ±Ïßlºã¹ý¶¨µãΪA£¨2£¬0£©£®
£¨¢ò£©°ÑÖ±ÏßlµÄ·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÖУ¬
ÕûÀí£¬µÃ£º£¨9+7sin2¦Á£©t2+36tcos¦Á-9¡Á12=0£®
ÓÉtµÄ¼¸ºÎÒâÒåÖª|AP|=|t1|£¬|AQ|=|t2|£¬
¡ßµãAÔÚÍÖÔ²ÄÚ£¬Õâ¸ö·½³Ì±ØÓÐÁ½¸öʵ¸ù£¬
¡àt1t2=$\frac{-36¡Á3}{9+7si{n}^{2}¦Á}$£¬¡ß|AP|•|AQ|=|t1t2|=9£¬¼´|$\frac{-36¡Á3}{9+7si{n}^{2}¦Á}$|=9£¬
¡à$si{n}^{2}¦Á=\frac{3}{7}$£¬¡ß¦Á¡Ê£¨0£¬¦Ð£©£¬¡àtan$¦Á=¡À\frac{\sqrt{3}}{2}$£¬
¡àÖ±ÏßlµÄ·½³ÌΪy=$¡À\frac{\sqrt{3}}{2}£¨x-2£©$£®
µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±Ïߺã¹ýµÄ¶¨µã×ø±êµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÖ±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | 4=i | B£® | B=A=3 | C£® | x+y=0 | D£® | i=1-i |
| A£® | ƽÐÐËıßÐÎ | B£® | ¾ØÐÎ | C£® | ÌÝÐÎ | D£® | ÁâÐÎ |
| A£® | 140ÖÖ | B£® | 80ÖÖ | C£® | 70ÖÖ | D£® | 35ÖÖ |
| A£® | $\frac{¦Ð}{3}$ | B£® | $\frac{2¦Ð}{3}$ | C£® | $\frac{¦Ð}{6}$ | D£® | $\frac{5¦Ð}{6}$ |