题目内容

10.在△ABC中,角A,B,C所对应的边分别为a,b,c,且满足acosC=2bcosA-ccosA.
(1)求角A的大小;
(2)若a=2$\sqrt{3}$,c=2,求△ABC的面积.

分析 (1)由正弦定理可将acosC=2bcosA-ccosA转化为sinAcosC+cosAsinC=2sinBcosA⇒sin(A+C)=sinB=2sinBcosA⇒cosA=$\frac{1}{2}$即可
(2)在△ABC中,由余弦定理得a2=b2+c2-2bc•cosA⇒8=(b-4)(b+2)=0,解得b=4,即可求得面积.

解答 解:(1)由正弦定理可将acosC=2bcosA-ccosA转化为sinAcosC+cosAsinC=2sinBcosA,
⇒sin(A+C)=sinB=2sinBcosA⇒cosA=$\frac{1}{2}$
∵0<A<π∴A=$\frac{π}{3}$
(2)在△ABC中,由余弦定理得a2=b2+c2-2bc•cosA,即12=b2+4-2b→b2-2b
⇒8=(b-4)(b+2)=0,解得b=4,
s△ABC=$\frac{1}{2}bcsinA$=2$\sqrt{3}$

点评 本题考查了正余弦定理的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网