题目内容

在△ABC中,AD为BC边上的高,已知:AC=b;AB=c,AD=BC,求
b
c
+
c
b
的最大值.
考点:解三角形
专题:解三角形
分析:由三角形的面积公式可得
1
2
AD•BC=
1
2
AB•AC•sin∠BAC
,即a2=bcsin∠BAC.在△ABC中,利用余弦定理可得:a2=b2+c2-2bccos∠BAC.即可得出
b
c
+
c
b
用∠BAC表示,再利用三角函数的单调性即可得出.
解答: 解:∵AD⊥BC,AD=BC=a.
1
2
AD•BC=
1
2
AB•AC•sin∠BAC

∴a2=bcsin∠BAC,
在△ABC中,由余弦定理可得:a2=b2+c2-2bccos∠BAC.
∴bcsin∠BAC=b2+c2-2bccos∠BAC,
化为
b2+c2
bc
=sin∠BAC+2cos∠BAC,
令∠BAC=θ,θ∈(0,π).
b
c
+
c
b
=sinθ+2cosθ=
5
sin(θ+φ)
,其中φ=arctan2.
当sin(θ+φ)=1时,
b
c
+
c
b
取得最大值
5
点评:本题考查了三角形的面积公式、余弦定理、三角函数的单调性、两角和差的正弦公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网