ÌâÄ¿ÄÚÈÝ

ÒÑÖªÅ×ÎïÏßC1£ºy2=8xÓëË«ÇúÏßC2£º
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©Óй«¹²½¹µãF2£®µãAÊÇÇúÏßC1£¬C2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|AF2|=5£®
£¨1£©ÇóË«ÇúÏß½»µãF2¼°ÁíÒ»½»µãF1µÄ×ø±êºÍµãAµÄ×ø±ê£»
£¨2£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨3£©ÒÔF1ΪԲÐĵÄÔ²MÓëÖ±Ïßy=
3
xÏàÇУ¬Ô²N£º£¨x-2£©2+y2=1£¬¹ýµãP£¨1£¬
3
£©×÷»¥Ïà´¹Ö±ÇÒ·Ö±ðÓëÔ²M¡¢Ô²NÏཻµÄÖ±Ïßl1ºÍl2£¬Éèl1±»Ô²M½ØµÃµÄÏÒ³¤Îªs£¬l2±»Ô²N½ØµÃµÄÏÒ³¤Îªt£¬ÎÊ£º
s
t
ÊÇ·ñΪ¶¨Öµ£¿Èç¹ûÊÇ£¬ÇëÇó³öÕâ¸ö¶¨Öµ£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÅ×ÎïÏßC1£ºy2=8xµÄ½¹µãÄÜÇó³öË«ÇúÏß½»µãF2¼°ÁíÒ»½»µãF1µÄ×ø±ê£¬ÓÉÅ×ÎïÏß¶¨ÒåÄÜÇó³öµãAµÄ×ø±ê£®
£¨2£©ÓÉÒÑÖªÌõ¼þÍÆµ¼³ö
b2=4-a2
9
a2
-
24
b2
=1
£¬ÓÉ´ËÄÜÇó³öË«ÇúÏßC2µÄ·½³Ì£®
£¨3£©ÉèÔ²MµÄ·½³ÌΪ£º£¨x+2£©2+y2=r2£¬Éèl1µÄ·½³ÌΪkx-y+
3
-k=0£¬Éèl2µÄ·½³Ìx+ky-
3
k-1=0
£¬ÓÉ´ËÀûÓõ㵽ֱÏß¾àÀ빫ʽ½áºÏÒÑÖªÌõ¼þÄÜÇó³ö
s
t
ÊǶ¨Öµ
3
£®
½â´ð£º ½â£º£¨1£©¡ßÅ×ÎïÏßC1£ºy2=8xµÄ½¹µãΪF2£¨2£¬0£©£¬
¡àË«ÇúÏßC2µÄ½¹µãΪF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬
ÉèA£¨x0£¬y0£©£¬¡ßAÔÚÅ×ÎïÏßC1£ºy2=8xÉÏ£¬ÇÒ|AF2|=5£¬
ÓÉÅ×ÎïÏß¶¨ÒåµÃx0+2=5£¬¡àx0=3£¬y02=8¡Á3£¬¡ày0=¡À2
6
£¬
¡àA£¨3£¬2
6
£©»òA£¨3£¬-2
6
£©£®
£¨2£©ÓÉ£¨1£©ÖªË«ÇúÏߵİ뽹¾àc=2£¬ÇÒË«ÇúÏß¹ý½¹µã£¬
¡à
b2=4-a2
9
a2
-
24
b2
=1
£¬½âµÃa=1£¬b=
3
£¬
¡àË«ÇúÏßC2µÄ·½³ÌΪx2-
y2
3
=1
£®
£¨3£©
s
t
Ϊ¶¨Öµ£®ËµÃ÷ÈçÏ£º
ÉèÔ²MµÄ·½³ÌΪ£º£¨x+2£©2+y2=r2£¬
¡ßÔ²MÓëÖ±Ïßy=
3
x
ÏàÇУ¬
¡àÔ²MµÄ°ë¾¶Îªr=
2
3
1+(
3
)2
=
3
£¬
¡àÔ²M£º£¨x+2£©2+y2=3£¬
ÓÉÌâÒâÖªµ±Ö±Ïßl1µÄÖ±Ïß²»´æÔÚʱ²»·ûºÏÌâÒ⣬
¡àl1µÄÖ±ÏßµÄбÂÊ´æÔÚ£¬Éèl1µÄ·½³ÌΪy-
3
=k(x-1)
£¬
¼´kx-y+
3
-k=0£¬
Éèl2µÄ·½³ÌΪy-
3
=-
1
k
(x-1)
£¬¼´x+ky-
3
k-1=0
£¬
¡àµãF1µ½Ö±Ïßl1µÄ¾àÀëΪd1=
|3k-
3
|
1+k2
£¬
µãF2µ½Ö±Ïßl2µÄ¾àÀëΪd2=
|
3
k-1|
1+k2
£¬
¡àÖ±Ïßl1±»Ô²M½ØµÃµÄÏÒ³¤S=2
3-(
3k-
3
1+k2
)2
=2
6
3
k-6k2
1+k2
£¬
Ö±Ïßl2±»Ô²½ØµÃµÄÏÒ³¤t=2
1-(
3
-1
1+k2
)2
=1
2
3
k-2k2
1+k2
£¬
¡à
S
t
=
6
3
k-6k2
2
3
k-2k2
=
6(
3
k-k2)
2(
3
k-k2)
=
3
£¬
¡à
s
t
ÊǶ¨Öµ
3
£®
µãÆÀ£º±¾Ì⿼²éµãµÄ×ø±êµÄÇ󷨣¬¿¼²éË«ÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÁ½ÌõÏÒ³¤µÄ±ÈÖµÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµãµ½Ö±ÏߵľàÀ빫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø