题目内容
2.(Ⅰ)证明平面PDC⊥平面ABCD;
(Ⅱ)求直线PB与平面ABCD所成角的正弦值.
分析 (Ⅰ)证明AD⊥CD,AD⊥PD,推出AD⊥平面PDC,然后证明平面PCD⊥平面ABCD.
(Ⅱ)在平面PCD内,过点P作PE⊥CD交直线CD于点E,连接EB,说明∠PBE为直线PB与平面ABCD所成的角,通过在Rt△PEB中,求解sin∠PBE=$\frac{PE}{PB}$,推出结果.
解答 (Ⅰ)证明:由于底面ABCD是矩形,
故AD⊥CD,又由于AD⊥PD,CD∩PD=D,
因此AD⊥平面PDC,而AD?平面ABCD,
所以平面PCD⊥平面ABCD.…6分;
(Ⅱ)解:在平面PCD内,过点P作PE⊥CD交直线CD于点E,连接EB,
由于平面PCD⊥平面ABCD,而直线CD是平面PCD与平面ABCD的交线,![]()
故PE⊥平面ABCD,由此得∠PBE为直线PB与平面ABCD所成的角…8分
在△PDC中,由于PD=CD=2,∠PDC=120°,知∠PDE=60°.,
在Rt△PEC中,PE=PDsin60°=3,DE=12,PD=1,
且BE=$\sqrt{B{C}^{2}+C{E}^{2}}$=$\sqrt{1+{3}^{2}}$=$\sqrt{10}$,
故在Rt△PEB中,PB=$\sqrt{P{E}^{2}+B{E}^{2}}$=$\sqrt{13}$,sin∠PBE=$\frac{PE}{PB}$=$\frac{\sqrt{39}}{13}$.
所以直线PB与平面ABCD所成的角的正弦值为$\frac{\sqrt{39}}{13}$.…12分.
点评 本题考查直线与平面垂直,平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.
练习册系列答案
相关题目
13.设正项等比数列{an}的前n项和为Sn,且$\frac{{{a_{n+1}}}}{a_n}<1$,若a3+a5=20,a2a6=64,则S4=( )
| A. | 63或126 | B. | 252 | C. | 120 | D. | 63 |
7.若x,y满足$\left\{\begin{array}{l}2x-y+2≥0\;\\ x-y+2≥0\;,\;\\ y≥0\;\end{array}\right.$且z=-kx+y有最大值,则k的取值范围为( )
| A. | k≤1 | B. | 1≤k≤2 | C. | k≥1 | D. | k≥2 |
14.已知sin(π-α)>0,且cos(π+α)>0,则角α所在的象限是( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
12.设a∈R,若直线l1:ax+2y-8=0与直线l2:x+(a+1)y+4=0平行,则a的值为( )
| A. | 1 | B. | 1或-2 | C. | -2或-1 | D. | -1 |