题目内容
7.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)+f(x)≤0,对任意的0<a<b,则必有( )| A. | af(b)≤bf(a) | B. | bf(a)≤af(b) | C. | af(a)≤f(b) | D. | bf(b)≤f(a) |
分析 先构造函数,再由导数与原函数的单调性的关系解决.
解答 解:xf′(x)+f(x)≤0⇒[xf(x)]′≤0⇒函数F(x)=xf(x)在(0,+∞)上为常函数或递减,
又0<a<b且f(x)非负,于是有:af(a)≥bf(b)≥0①$\frac{1}{{a}^{2}}$>$\frac{1}{{b}^{2}}$>0②,
①②两式相乘得:$\frac{f(a)}{a}$≥$\frac{f(b)}{b}$≥0⇒af(b)≤bf(a),
故选:A.
点评 本题的难点在对不等式②的设计,需要经验更需要灵感.
练习册系列答案
相关题目
10.函数f(x)=-x3+ax2-x-1在R上不单调,则实数a的取值范围是( )
| A. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) | B. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | C. | [-$\sqrt{3}$,$\sqrt{3}$] | D. | (-$\sqrt{3}$,$\sqrt{3}$) |
15.函数y=(x2-1)2+2的极值点是( )
| A. | x=1 | B. | x=-1或0 | C. | x=-1或1或0 | D. | x=0或1 |
2.定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是锐角三角形的两个内角,下列不等式正确的是( )
| A. | f(sinα)>f(cosβ) | B. | f(sinα)<f(cosβ) | C. | f(cosα)<f(cosβ) | D. | f(sinα)>f(sinβ) |
19.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为( )
| A. | 16 | B. | $\frac{16}{3}$ | C. | 32 | D. | 48 |