题目内容
6.把下列参数方程化为普通方程(1)$\left\{\begin{array}{l}x=2cosφ\\ y=sinφ\end{array}\right.$(φ为参数)
(2)$\left\{\begin{array}{l}x=3cosφ\\ y=4sinφ\end{array}\right.$(φ为参数).
分析 (1)参数方程转化为$\left\{\begin{array}{l}{cosφ=\frac{x}{2}}\\{sinφ=y}\end{array}\right.$,(φ为参数),由sin2φ+cos2φ=1,能把参数方程化为普通方程.
(2)参数方程转化为$\left\{\begin{array}{l}{cosφ=\frac{x}{3}}\\{sinφ=\frac{y}{4}}\end{array}\right.$(φ为参数),由sin2φ+cos2φ=1,能把参数方程化为普通方程.
解答 解:(1)∵$\left\{\begin{array}{l}x=2cosφ\\ y=sinφ\end{array}\right.$(φ为参数),∴$\left\{\begin{array}{l}{cosφ=\frac{x}{2}}\\{sinφ=y}\end{array}\right.$,(φ为参数)
∵sin2φ+cos2φ=1,
∴参数方程化为普通方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)∵$\left\{\begin{array}{l}x=3cosφ\\ y=4sinφ\end{array}\right.$(φ为参数),∴$\left\{\begin{array}{l}{cosφ=\frac{x}{3}}\\{sinφ=\frac{y}{4}}\end{array}\right.$(φ为参数),
∵sin2φ+cos2φ=1,
∴参数方程化为普通方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{16}$=1.
点评 本题曲线的普通方程的求法,考查参数方程与直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
| A. | m>n | B. | m<n | C. | m=n | D. | m≤n |
| A. | -14 | B. | -10 | C. | 10 | D. | 无法确定 |
| A. | a-b=0的充要条件是$\frac{a}{b}$=1 | B. | ?x∈R,2x>x | ||
| C. | ?x0∈R,|x0|<0 | D. | 若p∧q为假,则p∨q为假 |
| A. | 57 | B. | 59 | C. | 63 | D. | 67 |
| A. | (-∞,4] | B. | (-∞,2] | C. | (-∞,2-ln2] | D. | (-∞,4-ln2] |
| A. | -$\frac{1}{2}$ | B. | -$\frac{2}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{1}{4}$ |
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |