题目内容
20.已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=3x上,则sin(2θ+$\frac{π}{3}$)=( )| A. | $\frac{3-4\sqrt{3}}{10}$ | B. | -$\frac{3-4\sqrt{3}}{10}$ | C. | $\frac{4-3\sqrt{3}}{10}$ | D. | -$\frac{4-3\sqrt{3}}{10}$ |
分析 根据定义求解sinθ和cosθ的值,利用两角和与差的公式以及二倍角公式即可化简并求解出答案.
解答 解:由题意,已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=3x上,
可知θ在第一或第三象限.
根据正余弦函数的定义:可得sinθ=$±\frac{3\sqrt{10}}{10}$,cosθ=±$\frac{\sqrt{10}}{10}$,
则sin(2θ+$\frac{π}{3}$)=sin2θcos$\frac{π}{3}$+cos2θsin$\frac{π}{3}$=sinθcosθ+$\frac{\sqrt{3}}{2}(1-2si{n}^{2}θ)$=$\frac{3}{10}+\frac{\sqrt{3}}{2}-\sqrt{3}•\frac{9}{10}$=$\frac{3-4\sqrt{3}}{10}$
故选:A.
点评 本题主要考查了正余弦函数的定义的运用和两角和与差的公式以及二倍角公式的化简和计算能力,属于中档题.
练习册系列答案
相关题目
12.已知命题p,q是简单命题,则“¬p是假命题”是“p∨q是真命题”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |