题目内容
15.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=4x+3y的最大值为10.分析 作出不等式组表示的平面区域,先考虑z=4x+3y,表示直线z=4x+3y在y轴上的截距,截距越大,z越大,结合图形可求z的最大值
解答 解:作出实数x,y满足条件不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,表示的平面区域,如图所示![]()
考虑z=4x+3y,
∵y=-$\frac{4}{3}$x+$\frac{1}{3}$z,
平移直线y=-$\frac{4}{3}$x+$\frac{1}{3}$z,当直线经过B表示直线z=4x+3y在y轴上的截距最大,
由$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$可得A(1,2),此时z=10,zmax=10.
给答案为:10.
点评 本题主要考查了线性规划在求解目标函数的最值中的应用,解题的关键是利用目标函数的几何意义.
练习册系列答案
相关题目
10.如表是某位文科生连续5次月考的历史、政治的成绩,结果如下:
(Ⅰ)求该生5次月考历史成绩的平均分和政治成绩的方差;
(Ⅱ)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值.
| 月份 | 9 | 10 | 11 | 12 | 1 |
| 历史(x 分) | 79 | 81 | 83 | 85 | 87 |
| 政治(y 分) | 77 | 79 | 79 | 82 | 83 |
(Ⅱ)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值.
20.已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=3x上,则sin(2θ+$\frac{π}{3}$)=( )
| A. | $\frac{3-4\sqrt{3}}{10}$ | B. | -$\frac{3-4\sqrt{3}}{10}$ | C. | $\frac{4-3\sqrt{3}}{10}$ | D. | -$\frac{4-3\sqrt{3}}{10}$ |
7.等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为$\frac{5}{4}$,则S4=( )
| A. | 29 | B. | 30 | C. | 33 | D. | 36 |
4.将函数f(x)=3sin4x+$\sqrt{3}$cos4x图象上所有点的横坐标变为原来的2倍,再向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则y=g(x)的图象的一条对称轴方程是( )
| A. | x=$\frac{π}{12}$ | B. | x=$\frac{π}{6}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{2π}{3}$ |